A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surfactant gel adsorption of platinum(II), (IV) and palladium(II) as chloro-complexes and kinetic separation of palladium from platinum using EDTA. | LitMetric

A micellar solution of cetylpyridinium chloride (CPC) can separate into two phases due to a temperature change or to the addition of salts. Platinum(II), (IV) and palladium(II) reacted with chloride ions to form stable anionic complexes of PtCl4(2-), PtCl6(2-) and PdCl4(2-), respectively, and were adsorbed onto the CPC gel phase. The CPC phase plays the role of an ion-exchange adsorbent for the anionic complexes. By such a procedure, the precious metals of platinum and palladium could be separated from base metals such as copper, zinc and iron. The kinetic separation was performed by a ligand exchange reaction of the palladium(II) chloro-complex with EDTA at 60 degrees C. The anionic palladium(II)-EDTA complex could not bind the opposite charged CP+ and was desorbed from the CPC phase. In the aqueous phase, the recovery of palladium(II) by the double-desorption was 101.1 +/- 1.2%. The platinum(II) and (IV) chloro-complexes were stable for at least 30 min and remained in the CPC phase.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.23.1147DOI Listing

Publication Analysis

Top Keywords

cpc phase
12
platinumii palladiumii
8
kinetic separation
8
anionic complexes
8
cpc
5
phase
5
surfactant gel
4
gel adsorption
4
adsorption platinumii
4
palladiumii
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!