A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A statistical appraisal of disproportional versus proportional microbial source tracking libraries. | LitMetric

A statistical appraisal of disproportional versus proportional microbial source tracking libraries.

J Water Health

National Oceanic and Atmospheric Administration, 219 Fort Johnson Road, Charleston, SC 29412-9110, USA.

Published: December 2007

Library-based microbial source tracking (MST) can assist in reducing or eliminating fecal pollution in waters by predicting sources of fecal-associated bacteria. Library-based MST relies on an assembly of genetic or phenotypic "fingerprints" from pollution-indicative bacteria cultivated from known sources to compare with and identify fingerprints of unknown origin. The success of the library-based approach depends on how well each source candidate is represented in the library and which statistical algorithm or matching criterion is used to match unknowns. Because known source libraries are often built based on convenience or cost, some library sources may contain more representation than others. Depending on the statistical algorithm or matching criteria, predictions may become severely biased toward classifying unknowns into the library's dominant source category. We examined prediction bias for four of the most commonly used statistical matching algorithms in library-based MST when applied to disproportionately-represented known source libraries; maximum similarity (MS), average similarity (AS), discriminant analyses (DA), and k-means nearest neighbor (k-NN). MS was particularly sensitive to disproportionate source representation. AS and DA were more robust. k-NN provided a compromise between correct prediction and sensitivity to disproportional libraries including increased matching success and stability that should be considered when matching to disproportionally-represented libraries.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wh.2007.044DOI Listing

Publication Analysis

Top Keywords

microbial source
8
source tracking
8
library-based mst
8
statistical algorithm
8
algorithm matching
8
source libraries
8
source
7
libraries
5
matching
5
statistical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!