Regulatory T cells enhance persistence of the zoonotic pathogen Seoul virus in its reservoir host.

Proc Natl Acad Sci U S A

The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.

Published: September 2007

Hantaviruses are zoonotic pathogens that maintain a persistent infection in their reservoir hosts, yet the mechanisms mediating persistence remain unknown. Regulatory T cell responses cause persistent infection by suppressing proinflammatory and effector T cell activity; hantaviruses may exploit these responses to cause persistence. To test this hypothesis, male Norway rats were inoculated with Seoul virus and regulatory T cells were monitored during infection. Increased numbers of CD4(+)CD25(+)Forkhead box P3(+) T cells and expression of Forkhead box P3 and TGF-beta were observed in the lungs of male rats during persistent Seoul virus infection. To determine whether regulatory T cells modulate Seoul virus persistence, regulatory T cells were inactivated in male rats by using an anti-rat CD25 monoclonal antibody (NDS-63). Inactivation of regulatory T cells reduced the amount of Seoul virus RNA present in the lungs and the proportion of animals shedding viral RNA in saliva. Because regulatory T cells suppress proinflammatory-induced pathogenesis, pathologic observations in the lungs were evaluated during infection. Subclinical acute multifocal areas of hemorrhage and edema were noted in the lungs during infection; inactivation of regulatory T cells reduced the amount of pathologic foci. Expression of TNF was suppressed during the persistent phase of infection; inactivation of regulatory T cells eliminated the suppression of TNF. Taken together, these data suggest that regulatory T cells mediate Seoul virus persistence, possibly through elevated transcription and synthesis of TGF-beta and suppression of TNF. These data provide evidence of regulatory T cell involvement in the persistence of a zoonotic pathogen in its natural reservoir host.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2000529PMC
http://dx.doi.org/10.1073/pnas.0707453104DOI Listing

Publication Analysis

Top Keywords

regulatory cells
36
seoul virus
24
inactivation regulatory
12
regulatory
11
cells
9
persistence zoonotic
8
zoonotic pathogen
8
reservoir host
8
persistent infection
8
regulatory cell
8

Similar Publications

NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination.

Nat Commun

December 2024

Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.

The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.

View Article and Find Full Text PDF

The proximity ligation-based Hi-C and derivative methods are the mainstream tools to study genome-wide chromatin interactions. These methods often fragment the genome using enzymes functionally irrelevant to the interactions per se, restraining the efficiency in identifying structural features and the underlying regulatory elements. Here we present Footprint-C, which yields high-resolution chromatin contact maps built upon intact and genuine footprints protected by transcription factor (TF) binding.

View Article and Find Full Text PDF

Cadmium, a toxic heavy metal, poses significant global concern. A strain of the genus Pseudomonas, CD3, demonstrating significant cadmium resistance (up to 3 mM CdCl.HO) was identified from a pool of 26 cadmium-resistant bacteria isolated from cadmium-contaminated soil samples from Malda, India.

View Article and Find Full Text PDF

Although CCL17 has been reported to exert a vital role in many cancers, the related studies in the thyroid carcinoma have never reported. As a chemokine, CCL17 plays a positive role by promoting the infiltration of immune cells into the tumor microenviroment (TME) to influence tumor invasion and metastasis. Therefore, this study is aimed to investigate the association of CCL17 level with potential prognostic value on tumor immunity in the thyroid carcinoma (THCA) based on the bioinformatics analysis.

View Article and Find Full Text PDF

The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!