Six different tetracalcium phosphate (TTCP) products were synthesized by solid state reaction at high temperature by varying the overall calcium to phosphate ratio of the synthesis mixture. The objective was to evaluate the effect of the calcium to phosphate ratio on a TTCP-dicalcium phosphate dihydrate (DCPD) cement. The resulting six TTCP-DCPD cement mixtures were characterized using X-ray diffraction analysis, scanning electron microscopy, and pH measurements. Setting times and compressive strength (CS) were also measured. Using the TTCP product with a Ca/P ratio of 2.0 resulted in low strength values (25.61 MPa) when distilled water was used as the setting liquid, even though conversion to hydroxyapatite was not prevented, as confirmed by X-ray diffraction. The suspected CaO presence in this TTCP may have affected the cohesiveness of the cement mixture but not the cement setting reaction, however no direct evidence of CaO presence was found. Lower Ca/P ratio products yielded cements with CS values ranging from 46.7 MPa for Ca/P ratio of 1.90 to 38.32 MPa for Ca/P ratio of 1.85. When a dilute sodium phosphate solution was used as the setting liquid, CS values were 15.3% lower than those obtained with water as the setting liquid. Setting times ranged from 18 to 22 min when water was the cement liquid and from 7 to 8 min when sodium phosphate solution was used, and the calcium to phosphate ratio did not have a marked effect on this property.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.31478 | DOI Listing |
J Int Soc Prev Community Dent
December 2024
Assistant professor, Oral and Dental Disease Research Center, Department of Operative Dentistry, Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran.
Aim: Tooth sensitivity caused by exposed dentin tubules is a common clinical problem requiring correct treatment methods. Owing to the spread of the COVID-19 virus, it has become common to use different mouthwashes, including 1.5% hydrogen peroxide (HP), before dental procedures.
View Article and Find Full Text PDFMater Today Bio
February 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
Inspired by the initial mineralization process with bone matrix vesicles (MVs), this study innovatively developed a delivery system to mediate mineralization during bone regeneration. The system comprises nanofibrous chitosan microspheres (NCM) and poly (allylamine hydrochloride)-stabilized amorphous calcium phosphate (PAH-ACP), which is thereafter referred to as NCMP. NCM is synthesized through the thermal induction of chitosan molecular chains, serving as the carrier, while PAH-ACP functions as the mineralization precursor.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Orthopaedics, Leiden University Medical Center, Leiden, Albinusdreef 2, 2333 ZA, The Netherlands.
Background: Prosthetic joint infection is a serious complication that can arise after total joint replacement surgery. When bacteria colonise an orthopaedic implant, they form biofilms that protect them from their environment, making them difficult to remove. Treatment is further complicated by a global rise of antimicrobial resistance.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Dental Medicine and Nursing, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania.
Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it was found that the inclusions of nanosized fillers in the coating structure improves biomineralization and consequently implant osseointegration, as the nanoparticles represent calcium phosphate nucleation centers and lead to the deposition of highly organized hydroxyapatite crystallites on the implant surface. In this study, magnetic nanoparticles synthesized by the co-precipitation method were used for the preparation of cellulose acetate composite coatings through the phase-inversion method.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Division of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea.
Bone tissue engineering aims to develop biomaterials that are capable of effectively repairing and regenerating damaged bone tissue. Among the various polymers used in this field, polycaprolactone (PCL) is one of the most widely utilized. As a biocompatible polymer, PCL is easy to fabricate, cost-effective, and offers consistent quality control, making it a popular choice for biomedical applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!