Estrogen receptor beta gene codes for a variety of transcript isoforms resulting from alternative splicing, which are expressed both in mammary gland and in breast cancer cells. We studied the function of two exon-deleted ERbeta isoforms recently identified by our group in comparison to ERbeta1 in regulation of growth, apoptosis and gene expression of two breast cancer cell lines with different ERalpha status. Overexpression of ERbeta1, but not of the exon-deleted variants exerted strong antitumoral effects both on ERalpha-positive MCF-7 and ERalpha-negative SK-BR-3 cells. ERbeta1 overexpression slowed growth of MCF-7 and SK-BR-3 cells in the absence of E2 and also inhibited E2-triggered growth stimulation of MCF-7 cells, but overexpression of the exon-skipped variants did not affect cell growth. Whereas overexpression of ERbeta1 triggered an increased basal and tamoxifen-induced apoptosis of MCF-7 and SK-BR-3 cells, the isoforms ERbetadelta125 or ERbetadelta1256 did not affect cellular tamoxifen response. The observed lack of function of the exon-deleted variants in terms of regulation of proliferation was accompanied both by their inability to affect expression of cyclins D1 and A2, p21 (WAF1) and PR and their disability to modulate estrogen response element (ERE) activation. In contrast, our results demonstrating antitumoral effects of ERbeta1 on breast cancer cells with different ERalpha-status support the hypothesis that ERbeta is able to exert antitumoral actions both on ERalpha-positive and -negative breast cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-007-9749-7DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
cancer cells
12
sk-br-3 cells
12
estrogen receptor
8
receptor beta
8
growth apoptosis
8
apoptosis gene
8
gene expression
8
cancer cell
8
cell lines
8

Similar Publications

Aim: Breast cancer is the second most common cancer among women and the leading cause of cancer-related mortality in this population. Numerous factors have been identified as either risk factors or protective factors for breast cancer. However, the role of Vitamin D (Vit.

View Article and Find Full Text PDF

Purpose: To investigate the effects of compression therapy combined with exercise for cancer patients (EXCAP) in patients with peripheral neuropathy caused by breast cancer chemotherapy.

Methods: Overall, 108 patients with peripheral neuropathy after chemotherapy for breast cancer were randomly divided into the control group (routine nursing), experimental group 1 (compression therapy), and experimental group 2 (compression therapy and EXCAP). The National Institute of Cancer Drug Toxicity Rating Scale and the Chemotherapy-Induced Peripheral Neuropathy Assessment Tool were assessed and compared between groups.

View Article and Find Full Text PDF

Purpose: Over 50% of households in the United States have at least one musician-many musicians are also breast cancer survivors. This group has not been well studied, and given the level of fine sensory-motor skill required for musicianship, we hypothesized that musicians experience unique manifestations of breast cancer treatment toxicities.

Methods: A nine-item Musical Toxicity Questionnaire (MTQ) was distributed to patients who had consented to participate in the Mayo Clinic Breast Cancer Registry.

View Article and Find Full Text PDF

Rare Indocyanine-Induced Anaphylactic Shock During Deep Inferior Epigastric Artery Perforator Breast Reconstruction: A Case Report.

Ann Plast Surg

February 2025

From the Department of Plastic and Reconstructive Surgery, Ewha Womans University College of Medicine, Mokdong Hospital, Seoul, Republic of Korea.

Indocyanine green (ICG) is a water-soluble green substance that is detectable through infrared cameras and emits greenish light. Approved for medical use in the 1950s, ICG has gained prominence as a real-time visualization tool. Widely recognized as a generally safe substance, ICG is applied in diverse fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!