Background: Posttransplant diabetes mellitus (PTDM) is common after liver transplantation and was recently identified as a risk factor for hepatitis C progression. Increased levels of oxidative stress have been identified in diabetes and hepatitis C. The aim of this study was to evaluate the relationship among PTDM, oxidative damage in liver biopsy specimens, and fibrosis progression posttransplant.

Methods: Subjects consisted of 27 hepatitis C-infected liver transplant recipients who had liver biopsy specimens available from 49 protocol liver biopsies. Paraffin embedded liver tissue sections were stained for 8-hydroxy-2' deoxyguanosine (8-OHdG), an indicator of hydroxyl radical mediated tissue damage. The percentage of cells staining for 8-OHdG in a histologic section was categorized as high (>66%) versus low score (< or =66%). Fibrosis index was calculated as fibrosis score (0-4)/ years posttransplant. Time to bridging fibrosis or cirrhosis (F3-4) was compared as a function of PTDM and 8-OHdG score.

Results: Considering all 49 biopsies, fibrosis index was higher in cases with PTDM (P<0.001) and high 8-OHdG score (P=0.004). High 8-OHdG score was associated with PTDM (P=0.012). In time to event analyses, time to F3-4 was more rapid in patients with PTDM (P=0.02) and in those with high 8-OHdG scores (P<0.001).

Conclusions: This study confirmed a relationship between PTDM and hepatitis C fibrosis progression and found that oxidative damage in liver biopsy specimens was associated with PTDM and more rapid development of advanced fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.tp.0000279003.40279.0eDOI Listing

Publication Analysis

Top Keywords

oxidative damage
8
hepatitis progression
8
liver transplantation
8
liver biopsy
8
biopsy specimens
8
liver
7
fibrosis
5
diabetes hepatic
4
hepatic oxidative
4
damage associated
4

Similar Publications

PrP Glycoprotein Is Indispensable for Maintenance of Skeletal Muscle Homeostasis During Aging.

J Cachexia Sarcopenia Muscle

February 2025

Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.

Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.

Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).

View Article and Find Full Text PDF

Natural aging is associated with mild memory loss and cognitive decline, and age is the greatest risk factor for neurodegenerative diseases, such as Alzheimer's disease. There is substantial evidence that oxidative stress is a major contributor to both natural aging and neurodegenerative disease, and coincidently, levels of redox active metals such as Fe and Cu are known to be elevated later in life. Recently, a pronounced age-related increase in Cu content has been reported to occur in mice and rats around a vital regulatory brain region, the subventricular zone of lateral ventricles.

View Article and Find Full Text PDF

Strawberry anthocyanin pelargonidin-3-glucoside attenuated OA-induced neurotoxicity by activating UPR.

Food Funct

January 2025

Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

In this study, network pharmacology analysis revealed that strawberry anthocyanins mainly interfered with lipid metabolism and nerve-related signaling pathways. Pelargonidin-3-glucoside (Pg3G), one of the main anthocyanins in strawberry, was screened as the most effective anthocyanin for attenuating excess lipid accumulation. Moreover, Pg3G decreased lipid levels, relieved oxidative stress, and restored abnormal behavioral activities in under oleic acid (OA) exposure.

View Article and Find Full Text PDF

Background: The therapeutic armamentarium for heart failure with preserved ejection fraction (HFpEF) remains notably constrained. A factor contributing to this problem could be the scarcity of in vitro models for HFpEF, which hinders progress in developing new therapeutic strategies. Here, we aimed at developing a novel, comorbidity-inspired, human, in vitro model for HFpEF.

View Article and Find Full Text PDF

Research on the function of epigenetic regulation in the inflammation of non-alcoholic fatty liver disease.

Life Med

August 2024

Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi'an, Shaanxi 710032, China.

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition, characterized by a spectrum that progresses from simple hepatic steatosis to nonalcoholic steatohepatitis, which may eventually lead to cirrhosis and hepatocellular carcinoma. The precise pathogenic mechanisms underlying NAFLD and its related metabolic disturbances remain elusive. Epigenetic modifications, which entail stable transcriptional changes without altering the DNA sequence, are increasingly recognized as pivotal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!