Gene expression profiling of dendritic cells by microarray.

Methods Mol Biol

Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy.

Published: April 2008

The immune system of vertebrate animals has evolved to respond to different types of perturbations (invading pathogens, stress signals), limiting self-tissue damage. The decision to activate an immune response is made by antigen-presenting cells (APCs) that are quiescent until they encounter a foreign microorganism or inflammatory stimuli. Early activated APCs trigger innate immune responses that represent the first line of reaction against invading pathogens to limit the infections. At later times, activated APCs acquire the ability to prime antigen-specific immune responses that clear the infections and give rise to memory. During the immune response self-tissue damage is limited and tolerance to self is maintained through life. Among the cells that constitute the immune system, dendritic cells (DC) play a central role. They are extremely versatile APCs involved in the initiation of both innate and adaptive immunity and also in the differentiation of regulatory T cells required for the maintenance of self-tolerance. How DC can mediate these diverse and almost contradictory functions has recently been investigated. The plasticity of these cells allows them to undergo a complete genetic reprogramming in response to external microbial stimuli with the sequential acquisition of different regulatory functions in innate and adaptive immunity. The specific genetic reprogramming DC undergo upon activation can be easily investigated by using microarrays to perform global gene expression analysis in different conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-59745-395-0_13DOI Listing

Publication Analysis

Top Keywords

gene expression
8
dendritic cells
8
immune system
8
invading pathogens
8
self-tissue damage
8
immune response
8
activated apcs
8
immune responses
8
innate adaptive
8
adaptive immunity
8

Similar Publications

Tenomodulin (TNMD) is related to chondromodulin-1, a cartilage-derived growth regulator. It is specifically expressed in hypovascular connective tissues, including tendons and ligaments. Vascular endothelial growth factor A (VEGF-A) and calcitonin gene-related peptide (CGRP) correlate with angiogenesis and neurogenesis, respectively, during development.

View Article and Find Full Text PDF

Background: Large-scale coral bleaching events have become increasingly frequent in recent years. This process occurs when corals are exposed to high temperatures and intense light stress, leading to an overproduction of reactive oxygen species (ROS) by their endosymbiotic dinoflagellates. The ROS buildup prompts corals to expel these symbiotic microalgae, resulting in the corals' discoloration.

View Article and Find Full Text PDF

Identification, Clinical Values, and Prospective Pathway Signaling of Lipid Metabolism Genes in Epilepsy and AED Treatment.

Mol Neurobiol

January 2025

Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Southeast University, Dingjiaqiao 87, Nanjing, 210009, Jiangsu, China.

The dysregulation of lipid metabolism has been associated with the etiology and progression of the neurological pathology. However, the roles of lipid metabolism and the molecular mechanism in epilepsy and the use of antiepileptic drugs (AEDs) are relatively understudied. Gene expression profiles of GSE143272 from blood samples were included for differential analysis, and the lipid metabolism-related differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

Role of Acorus calamus extract in reducing exosome secretion by targeting Rab27a and nSMase2: a therapeutic approach for breast cancer.

Mol Biol Rep

January 2025

Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.

Background: Exosomes are extracellular vesicles released by cells that mediate intercellular communication and actively participate in cancer progression, metastasis, and regulation of immune response within the tumour microenvironment. Inhibiting exosome release from cancer cells could be employed as a therapeutic against cancer.

Methods And Results: In the present study, we have studied the effects of Acorus calamus in inhibiting exosome secretion via targetting Rab27a and neutral sphingomyelinase 2 (nSMase2) in HER2-positive (MDA-MB-453), hormone receptor-positive (MCF-7) and triple-negative breast cancer (MDA-MB-231) cells.

View Article and Find Full Text PDF

Upon stimulation and activation, mast cells (MCs) release soluble mediators, including histamine, proteases, and cytokines. These mediators are often stored within cytoplasmic granules in MCs and may be released in a granulated form. The secretion of cytokines and chemokines occurs within hours following activation, with the potential to result in chronic inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!