Reactive oxygen species mediated apoptosis of esophageal cancer cells induced by marine triprenyl toluquinones and toluhydroquinones.

Mol Cancer Ther

Intitute of Infectious Deseases and Molecular Medicine, Division of Medical Biochemistry, University of Cape Town, Faculty of Health Sciences, Private Bag X3, Observatory, Cape Town, 7935, South Africa.

Published: September 2007

Marine invertebrates, algae, and microorganisms are prolific producers of novel secondary metabolites. Some of these secondary metabolites have the potential to be developed as chemotherapeutic agents for the treatment of a wide variety of diseases, including cancer. We describe here the mechanism leading to apoptosis of esophageal cancer cell lines in the presence of triprenylated toluquinones and toluhydroquinones originally isolated from the Arminacean nudibranch Leminda millecra. Triprenylated toluquinone-induced and toluhydroquinone-induced cell death is mediated via apoptosis after a cell cycle block. Molecular events include production of reactive oxygen species (ROS), followed by induction and activation of c-Jun (AP1) via c-Jun-NH2-kinase-mediated and extracellular signal-regulated kinase-mediated pathways. Partial resistance to these compounds could be conferred by the ROS scavengers Trolox and butylated hydroxyanisol, a c-Jun-NH2-kinase inhibitor, and inhibition of c-Jun with a dominant negative mutant (TAM67). Interestingly, the levels of ROS produced varied between compounds, but was proportional to the ability of each compound to kill cells. Because cancer cells are often more susceptible to ROS, these compounds present a plausible lead for new antiesophageal cancer treatments and show the potential of the South African marine environment to provide new chemical entities with potential clinical significance.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-06-0760DOI Listing

Publication Analysis

Top Keywords

reactive oxygen
8
oxygen species
8
mediated apoptosis
8
apoptosis esophageal
8
esophageal cancer
8
cancer cells
8
toluquinones toluhydroquinones
8
secondary metabolites
8
cancer
5
species mediated
4

Similar Publications

Cardioprotective potential of tectochrysin against vanadium induced heart damage via regulating NLRP3, JAK1/STAT3 and NF-κB pathway.

J Trace Elem Med Biol

January 2025

Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.

Background: Vanadium (VAN) is a significant trace element, but its higher exposure is reported to cause severe organ toxicity. Tectochrysin (TEC) is a naturally derived flavonoid which demonstrates a wide range of pharmacological properties.

Aim: The current study was planned to assess the cardioprotective potential of TEC against VAN induced cardiotoxicity in rats via regulating biochemical, and histological profile.

View Article and Find Full Text PDF

A Conjugated Oligomer with Drug Efflux Pump Inhibition and Photodynamic Therapy for Synergistically Combating Resistant Bacteria.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China.

High expression of drug efflux pump makes antibiotics ineffective against bacteria, leading to drug-resistant strains and even the emergence of "superbugs". Herein, we design and synthesize a dual functional o-nitrobenzene (NB)-modified conjugated oligo-polyfluorene vinylene (OPFV) photosensitizer, OPFV-NB, which can depress efflux pump activity and also possesses photodynamic therapy (PDT) for synergistically overcoming drug-resistant bacteria. Upon light irradiation, the OPFV-NB can produce aldehyde active groups to covalently bind outer membrane proteins, such as tolerant colicin (TolC), blocking drug efflux of bacteria.

View Article and Find Full Text PDF

Versatile Thermally Activated Delayed Fluorescence Material Enabling High Efficiencies in both Photodynamic Therapy and Deep-Red/NIR Electroluminescence.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China.

Thermally activated delayed fluorescence (TADF) materials have received increasing attention from organic electronics to other related fields, such as bioapplications and photocatalysts. However, it remains a challenging task for TADF emitters to showcase the versatility concurrent with high performance in multiple applications. Herein, we first present such a proof-of-concept TADF material, namely, QCN-SAC, through strategically manipulating exciton dynamics.

View Article and Find Full Text PDF

This work established the cytotoxic, antioxidant and anticancer effects of copper nanoparticles (CuNPs) manufactured with fennel extract, especially on non-small cell lung cancer (NSCLC) as well. CuNPs caused cytotoxicity in a dose-dependent manner for two NSCLC cell lines, A549 and H1650. At 100 μg/ml, CuNPs reduced cell viability to 70% in A549 cells and 65% in H1650 cells.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) rely on self-renewal to sustain stem cell potential and undergo differentiation to generate mature blood cells. Mitochondrial fatty acid β-oxidation (FAO) is essential for HSC maintenance. However, the role of Carnitine palmitoyl transferase 1a (CPT1A), a key enzyme in FAO, remains unclear in HSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!