Downregulation of the transporter associated with antigen processing 1 (TAP-1) has been observed in many tumors and is closely associated with tumor immunoevasion mechanisms, growth, and metastatic ability. The molecular mechanisms underlying the relatively low level of transcription of the tap-1 gene in cancer cells are largely unexplained. In this study, we tested the hypothesis that epigenetic regulation plays a fundamental role in controlling tumor antigen processing and immune escape mechanisms. We found that the lack of TAP-1 transcription in TAP-deficient cells correlated with low levels of recruitment of the histone acetyltransferase, CBP, to the TAP-1 promoter. This results in lower levels of histone H3 acetylation at the TAP-1 promoter, leading to a decrease in accessibility of the RNA polymerase II complex to the TAP-1 promoter. These observations suggest that CBP-mediated histone H3 acetylation normally relaxes the chromatin structure around the TAP-1 promoter region, allowing transcription. In addition, we found a hitherto-unknown mechanism wherein interferon gamma up-regulates TAP-1 expression by increasing histone H3 acetylation at the TAP-1 promoter locus. These findings lie at the heart of understanding immune escape mechanisms in tumors and suggest that the reversal of epigenetic codes may provide novel immunotherapeutic paradigms for intervention in cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169144PMC
http://dx.doi.org/10.1128/MCB.01547-07DOI Listing

Publication Analysis

Top Keywords

tap-1 promoter
20
immune escape
12
escape mechanisms
12
histone acetylation
12
tap-1
9
antigen processing
8
acetylation tap-1
8
mechanisms
5
promoter
5
epigenetic control
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!