Hmo1 is required for TOR-dependent regulation of ribosomal protein gene transcription.

Mol Cell Biol

Unité de Biologie Cellulaire du Noyau, Unité de Génétique des Interactions Macromoléculaires, CNRS URA 2171, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris cedex 15, France.

Published: November 2007

Ribosome biogenesis requires equimolar amounts of four rRNAs and all 79 ribosomal proteins (RP). Coordinated regulation of rRNA and RP synthesis by eukaryotic RNA polymerases (Pol) I, III, and II is a key requirement for growth control. Using a novel global genetic approach, we showed that the absence of Hmo1 becomes lethal when combined with mutations of components of either the RNA Pol II or Pol I transcription machineries, of specific RP, or of the TOR pathway. Hmo1 directly interacts with both the region transcribed by Pol I and a subset of RP gene promoters. Down-regulation of Hmo1 expression affects RP gene expression. Upon TORC1 inhibition, Hmo1 dissociates from ribosomal DNA (rDNA) and some RP gene promoters simultaneously. Finally, in the absence of Hmo1, TOR-dependent repression of RP genes is alleviated. Therefore, we show here that Saccharomyces cerevisiae Hmo1 is directly involved in coordinating rDNA transcription by Pol I and RP gene expression by Pol II under the control of the TOR pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169146PMC
http://dx.doi.org/10.1128/MCB.01102-07DOI Listing

Publication Analysis

Top Keywords

absence hmo1
8
tor pathway
8
hmo1 directly
8
gene promoters
8
gene expression
8
hmo1
7
pol
6
gene
5
hmo1 required
4
required tor-dependent
4

Similar Publications

Mechanisms coordinating ribosomal protein gene transcription in response to stress.

Nucleic Acids Res

November 2020

Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.

While expression of ribosomal protein genes (RPGs) in the budding yeast has been extensively studied, a longstanding enigma persists regarding their co-regulation under fluctuating growth conditions. Most RPG promoters display one of two distinct arrangements of a core set of transcription factors (TFs) and are further differentiated by the presence or absence of the HMGB protein Hmo1. However, a third group of promoters appears not to be bound by any of these proteins, raising the question of how the whole suite of genes is co-regulated.

View Article and Find Full Text PDF

HMGB proteins are involved in structural rearrangements caused by regulatory chromatin remodeling factors. Particular interest is attracted to a DNA chaperone mechanism, suggesting that the HMGB proteins introduce bends into the double helix, thus rendering DNA accessible to effector proteins and facilitating their activity. The review discusses the role that the HMBG proteins play in key intranuclear processes, including assembly of the preinitiation complex during transcription of ribosomal genes; transcription by RNA polymerases I, II, and III; recruitment of the SWI/SNF complex during transcription of nonribosomal genes; DNA repair; etc.

View Article and Find Full Text PDF

Control of DNA end resection by yeast Hmo1p affects efficiency of DNA end-joining.

DNA Repair (Amst)

May 2017

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. Electronic address:

The primary pathways for DNA double strand break (DSB) repair are homologous recombination (HR) and non-homologous end-joining (NHEJ). The choice between HR and NHEJ is influenced by the extent of DNA end resection, as extensive resection is required for HR but repressive to NHEJ. Conversely, association of the DNA end-binding protein Ku, which is integral to classical NHEJ, inhibits resection.

View Article and Find Full Text PDF

Yeast HMO1: Linker Histone Reinvented.

Microbiol Mol Biol Rev

March 2017

Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA

Eukaryotic genomes are packaged in chromatin. The higher-order organization of nucleosome core particles is controlled by the association of the intervening linker DNA with either the linker histone H1 or high mobility group box (HMGB) proteins. While H1 is thought to stabilize the nucleosome by preventing DNA unwrapping, the DNA bending imposed by HMGB may propagate to the nucleosome to destabilize chromatin.

View Article and Find Full Text PDF

DNA is packaged into condensed chromatin fibers by association with histones and architectural proteins such as high mobility group (HMGB) proteins. However, this DNA packaging reduces accessibility of enzymes that act on DNA, such as proteins that process DNA after double strand breaks (DSBs). Chromatin remodeling overcomes this barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!