A large proportion of human cancers show deficiencies in the MHC class I antigen-processing machinery. Such defects render tumors resistant to immune eradication by tumoricidal CTLs. We recently identified a unique population of CTL that selectively targets tumor immune-escape variants through recognition of MHC-presented peptides, termed TEIPP (T cell epitopes associated with impaired peptide processing), expressed on cells lacking functional TAP-peptide transporters. Previously, we showed that vaccination with TEIPP peptides mediates protection against TAP-deficient tumors. Here, we further explored the concept of TEIPP-targeted therapy using a dendritic cell (DC)-based cellular vaccine. Impairment of TAP function in DC induced the presentation of endogenous TEIPP antigens by MHC class I molecules, and immunization with these DCs protected mice against the outgrowth of TAP-deficient lymphomas and fibrosarcomas. Immune analysis of vaccinated mice revealed strong TEIPP-specific CTL responses, and a crucial role for CD8(+) cells in tumor resistance. Finally, we show that TEIPP antigens could be successfully induced in wild-type DC by introducing the viral TAP inhibitor UL49.5. Our results imply that immune intervention strategies with TAP-inhibited DC could be developed for the treatment of antigen processing-deficient cancers in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-07-1092 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!