Spermidine/spermine N(1)-acetyltransferase-1 binds to hypoxia-inducible factor-1alpha (HIF-1alpha) and RACK1 and promotes ubiquitination and degradation of HIF-1alpha.

J Biol Chem

Vascular Program, Institute for Cell Engineering, the Departments of Pediatrics, Medicine, Oncology, and Radiation Oncology, and the McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205. Electronic address:

Published: November 2007

Hypoxia-inducible factor-1 (HIF-1) is a master regulator of oxygen homeostasis that controls the expression of genes encoding proteins that play key roles in angiogenesis, erythropoiesis, and glucose/energy metabolism. The stability of the HIF-1alpha subunit is regulated by ubiquitination and proteasomal degradation. In aerobic cells, O(2)-dependent prolyl hydroxylation of HIF-1alpha is required for binding of the von Hippel-Lindau tumor suppressor protein VHL, which then recruits the Elongin C ubiquitin-ligase complex. SSAT2 (spermidine/spermine N-acetyltransferase-2) binds to HIF-1alpha and promotes its ubiquitination/degradation by stabilizing the interaction of VHL and Elongin C. Treatment of cells with heat shock protein HSP90 inhibitors induces the degradation of HIF-1alpha even under hypoxic conditions. HSP90 competes with RACK1 for binding to HIF-1alpha, and HSP90 inhibition leads to increased binding of RACK1, which recruits the Elongin C ubiquitin-ligase complex to HIF-1alpha in an O(2)-independent manner. In this work, we demonstrate that SSAT1, which shares 46% amino acid identity with SSAT2, also binds to HIF-1alpha and promotes its ubiquitination/degradation. However, in contrast to SSAT2, SSAT1 acts by stabilizing the interaction of HIF-1alpha with RACK1. Thus, the paralogs SSAT1 and SSAT2 play complementary roles in promoting O(2)-independent and O(2)-dependent degradation of HIF-1alpha.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M705627200DOI Listing

Publication Analysis

Top Keywords

degradation hif-1alpha
12
hif-1alpha
11
hif-1alpha rack1
8
recruits elongin
8
elongin ubiquitin-ligase
8
ubiquitin-ligase complex
8
binds hif-1alpha
8
hif-1alpha promotes
8
promotes ubiquitination/degradation
8
stabilizing interaction
8

Similar Publications

Ferristatin II protects nucleus pulposus against degeneration through inhibiting ferroptosis and activating HIF-1α pathway mediated mitophagy.

Int Immunopharmacol

January 2025

Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250000, China; Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China. Electronic address:

Background: Nucleus pulposus (NP) degeneration represents a significant contributing factor in the pathogenesis of intervertebral disc (IVD) degeneration (IVDD), and is a key underlying mechanism in several lumbar spine pathologies. Nevertheless, the precise mechanisms that govern NP degeneration remain unclear. A significant contributing factor to IVDD has been identified as ferroptosis.

View Article and Find Full Text PDF

Myocardial infarction (MI) mobilizes macrophages, the central protagonists of tissue repair in the infarcted heart. Although necessary for repair, macrophages also contribute to adverse remodeling and progression to heart failure. In this context, specific targeting of inflammatory macrophage activation may attenuate maladaptive responses and enhance cardiac repair.

View Article and Find Full Text PDF

Heat acclimation mediates cellular protection via HSP70 stabilization of HIF-1α protein in extreme environments.

Int J Biol Sci

January 2025

Department of Otolaryngology Head and Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China.

Heat acclimation (HA) is an evolutionarily conserved trait that enhances tolerance to novel stressors by inducing heat shock proteins (HSPs). However, the molecular mechanisms underlying this phenomenon remain elusive. In this study, we established a HA mouse model through intermittent heat stimulation.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) are abundant in colorectal cancer (CRC), correlating with immunosuppression and disease progression. Activation of the stimulator of interferon gene (STING) signaling pathway in TAMs offers a promising approach for CRC therapy. However, current STING agonists face challenges related to tumor specificity and administration routes.

View Article and Find Full Text PDF

Acute liver failure (ALF) is a fulminant clinical syndrome that usually leads to multiple organ failure and high mortality. Macrophages play a crucial role in the initiation, development, and recovery of ALF. Targeting macrophages through immunotherapy holds significant promise as a therapeutic strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!