Yeast osmoregulation.

Methods Enzymol

Department of Cell and Molecular Biology, Göteborg University, Göteborg, Sweden.

Published: November 2007

Osmoregulation is the active control of the cellular water balance and encompasses homeostatic mechanisms crucial for life. The osmoregulatory system in the yeast Saccharomyces cerevisiae is particularly well understood. Key to yeast osmoregulation is the production and accumulation of the compatible solute glycerol, which is partly controlled by the high osmolarity glycerol (HOG) signaling system. Genetic analyses combined with studies on protein-protein interactions have revealed the wiring scheme of the HOG signaling network, a branched mitogen-activated protein (MAP) kinase (MAPK) pathway that eventually converges on the MAPK Hog1. Hog1 is activated following cell shrinking and controls posttranscriptional processes in the cytosol as well as gene expression in the nucleus. HOG pathway activity can easily and rapidly be controlled experimentally by extracellular stimuli, and signaling and adaptation can be separated by a system of forced adaptation. This makes yeast osmoregulation suitable for studies on system properties of signaling and cellular adaptation via mathematical modeling. Computational simulations and parallel quantitative time course experimentation on different levels of the regulatory system have provided a stepping stone toward a holistic understanding, revealing how the HOG pathway can combine rigorous feedback control with maintenance of signaling competence. The abundant tools make yeast a suitable model for an integrated analysis of cellular osmoregulation. Maintenance of the cellular water balance is fundamental for life. All cells, even those in multicellular organisms with an organism-wide osmoregulation, have the ability to actively control their water balance. Osmoregulation encompasses homeostatic processes that maintain an appropriate intracellular environment for biochemical processes as well as turgor of cells and organism. In the laboratory, the osmoregulatory system is studied most conveniently as a response to osmotic shock, causing rapid and dramatic changes in the extracellular water activity. Those rapid changes mediate either water efflux (hyperosmotic shock), and hence cell shrinkage, or influx (hypoosmotic shock), causing cell swelling. The yeast S. cerevisiae, as a free-living organism experiencing both slow and rapid changes in extracellular water activity, has proven a suitable and genetically tractable experimental system in studying the underlying signaling pathways and regulatory processes governing osmoregulation. Although far from complete, the present picture of yeast osmoregulation is both extensive and detailed (de Nadal et al., 2002; Hohmann, 2002; Klipp et al., 2005). Simulations using mathematical models combined with time course measurements of different molecular processes in signaling and adaptation have allowed elucidation of the first system properties on the yeast osmoregulatory network.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0076-6879(07)28002-4DOI Listing

Publication Analysis

Top Keywords

yeast osmoregulation
16
water balance
12
yeast
8
osmoregulation
8
cellular water
8
encompasses homeostatic
8
system
8
osmoregulatory system
8
hog signaling
8
hog pathway
8

Similar Publications

Background: Vermicompost contains humic acids, nutrients, earthworm excretions, beneficial microbes, growth hormones, and enzymes, which help plants to tolerate a variety of abiotic stresses. Effective microorganisms (EM) include a wide range of microorganisms' e.g.

View Article and Find Full Text PDF

Water is essential to all life on earth. It is a major component that makes up living organisms and plays a vital role in multiple biological processes. It provides a medium for chemical and enzymatic reactions in the cell and is a major player in osmoregulation and the maintenance of cell turgidity.

View Article and Find Full Text PDF

Osmoregulation by choline-based deep eutectic solvent induces electroactivity in Bacillus subtilis biofilms.

Enzyme Microb Technol

October 2024

Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China. Electronic address:

Article Synopsis
  • Bacillus subtilis is highlighted as a valuable model organism in biotechnology due to its weak electroactivity, which can be enhanced for better microbial electrochemical technology and metabolite production.
  • Adding compatible solute precursors like choline chloride has been shown to increase biofilm formation and current output in B. subtilis.
  • The study demonstrates that a combination of choline chloride and D-sorbitol helps alleviate osmotic stress in B. subtilis, enhancing biofilm electroactivity and suggesting that such salt-stressed environments may improve electrofermentation processes in biotechnology.
View Article and Find Full Text PDF

Natural environments of living organisms are often dynamic and multifactorial, with multiple parameters fluctuating over time. To better understand how cells respond to dynamically interacting factors, we quantified the effects of dual fluctuations of osmotic stress and glucose deprivation on yeast cells using microfluidics and time-lapse microscopy. Strikingly, we observed that cell proliferation, survival, and signaling depend on the phasing of the two periodic stresses.

View Article and Find Full Text PDF

The mycoparasitic fungus is applied in agriculture as a biostimulant and biologic control agent against fungal pathogens that infest crop plants. Secondary metabolites are among the main agents determining the strength and progress of the mycoparasitic attack. However, expression of most secondary metabolism-associated genes requires specific cues, as they are silent under routine laboratory conditions due to their maintenance in an inactive heterochromatin state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!