Understanding the signalling mechanisms controlling inflammatory cytokine production is pivotal to the research of both acute and chronic immune disorders. Tyrosine phosphorylation is one of the earliest events to occur in response to an immune challenge yet the role of specific tyrosine kinases in inflammatory cytokine production has been difficult to ascribe due to conflicting literature. Here we show that the pyrazolo pyrimidine compound PP2, a selective inhibitor of Src family kinases (SFK), can inhibit LPS-induced TNF production as well as a number of other inflammatory cytokines. In addition, we show similar effects of PP2 on cytokine production when induced by other TLRs, (1, 2 and 5-8), indicating that SFK are important common regulators of TLR signalling. PP2 suppressed the activity of both TNF and IL-10 driven reporter genes, suggesting that this activity is mediated at the level of transcription. Interestingly, however, PP2 had no significant effect on the activation of NF-kappaB, or on p42/44 ERK, p46/54 JNK or p38 MAPK phosphorylation. In contrast, PP2 did inhibit AP-1 nuclear accumulation in response to LPS. Taken together, these findings show that the Src kinases are able to control inflammatory cytokine production at the transcriptional level independently of NF-kappaB, and highlight the role of the AP-1 family of transcription factors as downstream mediators of Src kinase action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2007.07.026 | DOI Listing |
J Diabetes Metab Disord
June 2025
Department of Physiology, Kampala International University, Western Campus, Ishaka, Uganda.
Purpose: Diabetes mellitus is a global health challenge that leads to severe complications, negatively impacting overall health, life expectancy, and quality of life. Herbal medicines, valued for their accessibility and therapeutic benefits with minimal side effects, have been promoted as potential treatments. Managing conditions like diabetes, characterized by free radical production and cytokine-driven inflammation, is vital due to the active components in plants that exert direct pharmacological effects.
View Article and Find Full Text PDFOligodendroglial lineage cells (OLCs) are critical for neuronal support functions, including myelination and remyelination. Emerging evidence reveals their active roles in neuroinflammation, particularly in conditions like Multiple Sclerosis (MS). This study explores the inflammatory translatome of OLCs during the early onset of experimental autoimmune encephalomyelitis (EAE), an established MS model.
View Article and Find Full Text PDFUnlabelled: Crosstalk between autophagy, host cell death, and inflammatory host responses to bacterial pathogens enables effective innate immune responses that limit bacterial growth while minimizing coincidental host damage. ( ) thwarts innate immune defense mechanisms in alveolar macrophages (AMs) during the initial stages of infection and in recruited bone marrow-derived cells during later stages of infection. However, how protective inflammatory responses are achieved during infection and the variation of the response in different macrophage subtypes remain obscure.
View Article and Find Full Text PDFAtherosclerosis, a major contributor to cardiovascular disease, involves lipid accumulation and inflammatory processes in arterial walls, with oxidized low-density lipoprotein (OxLDL) playing a central role. OxLDL is increased during aging and stimulates monocyte transformation into foam cells and induces metabolic reprogramming and pro-inflammatory responses, accelerating atherosclerosis progression and contributing to other age-related diseases. This study investigated the effects of Mdivi-1, a mitochondrial fission inhibitor, and S1QEL, a selective complex I-associated reactive oxygen species (ROS) inhibitor, on OxLDL-induced responses in monocytes.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19), caused by infection with the enveloped RNA betacoronavirus, SARS-CoV-2, led to a global pandemic involving over 7 million deaths. Macrophage inflammatory responses impact COVID-19 severity; however, it is unclear whether macrophages are infected by SARS-CoV-2. We sought to identify mechanisms regulating macrophage expression of ACE2, the primary receptor for SARS-CoV-2, and to determine if macrophages are susceptible to productive infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!