Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The liver has a large regenerative capacity in response to injury. However, in severe cases of liver injury, its regenerative capacity may prove insufficent and the liver injury may progress to liver failure, and in such situations liver transplantation is the only treatment option. An alternative, less invasive approach may be transplantation of hepatocytes or hepatocyte precursor cells. In the adult liver two candidate progenitor cells have been identified: oval cells and small hepatocytes. The former are induced by liver injury under conditions preventing cell division of mature hepatocytes, while the latter are present in small numbers in normal liver. Both cell types have the capacity to expand and differentiate into hepatocytes. In recent years evidence has been presented that bone-marrow derived stem cells can also be expanded and differentiated into hepatocyte progenitor cells. Such cells may be a source for hepatocyte transplantation and hence have the potential to offer a novel therapy for liver failure.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!