Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance.

Plant Mol Biol

National Key Facility of Crop Gene Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing 100081, PR China.

Published: December 2007

ERF transcription factors play important roles in regulating gene expression under abiotic and biotic stresses. The first member of the ERF gene family in wheat (Triticum aestivum L.) was isolated by screening a drought-induced cDNA library and designated as T. aestivum ethylene-responsive factor 1 (TaERF1), which encoded a putative protein of 355 amino acids with a conserved DNA-binding domain and a conserved N-terminal motif (MCGGAIL). The TaERF1 gene was located on chromosome 7A. Protein interaction assays indicated that TaERF1, with a putative phosphorylation site (TPDITS) in the C-terminal region, was a potential phosphorylation substrate for TaMAPK1 protein kinase. Deletion of the N-terminal motif enhanced the interaction of TaERF1 with TaMAPK1. The predicted TaERF1 protein contained three putative nuclear localization signals (NLSs), and three NLSs modulated synergistically the activity of subcellular localization. As a trans-acting factor, TaERF1 was capable of binding to the GCC-box and CRT/DRE elements in vitro, and of trans-activating reporter gene expression in tobacco (Nicotiana tabacum L.) leaves. Transcription of the TaERF1 gene was induced not only by drought, salinity and low-temperature stresses and exogenous ABA, ethylene and salicylic acid, but also by infection with Blumeria graminis f. sp. tritici. Furthermore, overexpression of TaERF1 activated stress-related genes, including PR and COR/RD genes, under normal growth conditions, and improved pathogen and abiotic stress tolerance in transgenic plants. These results suggested that the TaERF1 gene encodes a GCC-box and CRT/DRE element binding factor that might be involved in multiple stress signal transduction pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-007-9237-9DOI Listing

Publication Analysis

Top Keywords

factor taerf1
12
taerf1 gene
12
taerf1
10
triticum aestivum
8
aestivum ethylene-responsive
8
ethylene-responsive factor
8
multiple stress
8
stress tolerance
8
gene expression
8
n-terminal motif
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!