Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies.

Mol Cell Biochem

Department of Biotechnology & Bioinformatics, New Drug Discovery Research, Ranbaxy Research Laboratories-R&D-3, 20-Sector 18 Udyog Vihar, Gurgaon, India.

Published: January 2008

Among the various expression systems employed for the over-production of proteins, bacteria still remains the favorite choice of a Protein Biochemist. However, even today, due to the lack of post-translational modification machinery in bacteria, recombinant eukaryotic protein production poses an immense challenge, which invariably leads to the production of biologically in-active protein in this host. A number of techniques are cited in the literature, which describe the conversion of inactive protein, expressed as an insoluble fraction, into a soluble and active form. Overall, we have divided these methods into three major groups: Group-I, where the factors influencing the formation of insoluble fraction are modified through a stringent control of the cellular milieu, thereby leading to the expression of recombinant protein as soluble moiety; Group-II, where protein is refolded from the inclusion bodies and thereby target protein modification is avoided; Group-III, where the target protein is engineered to achieve soluble expression through fusion protein technology. Even within the same family of proteins (e.g., tyrosine kinases), optimization of standard operating protocol (SOP) may still be required for each protein's over-production at a pilot-scale in Escherichia coli. However, once standardized, this procedure can be made amenable to the industrial production for that particular protein with minimum alterations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-007-9603-6DOI Listing

Publication Analysis

Top Keywords

protein
10
expression systems
8
insoluble fraction
8
target protein
8
production
4
production active
4
active eukaryotic
4
eukaryotic proteins
4
proteins bacterial
4
expression
4

Similar Publications

Insights into NEK2 inhibitors as antitumor agents: From mechanisms to potential therapeutics.

Eur J Med Chem

January 2025

Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification.

View Article and Find Full Text PDF

Albumin and γ-globulin concentrations in subcutaneous adipose tissues (SAT) have been quantified by multivariate regression based on admittance relaxation time distribution (mraRTD) under the fluctuated background of sodium electrolyte concentration. The mraRTD formulates P = Ac + Ξ (P: peak matrix of distribution function magnitude ɣP and frequency τP, c: concentration matrix of albumin cAlb, γ-globulin Gloc, and sodium electrolyte Nac, A: coefficient matrix of a multivariate regression model, and Ξ: error matrix). The mraRTD is implemented by two processes which are: 1) the training process of A through the maximum likelihood estimation of P and 2) the quantification process of cAlb, Gloc, and Nac through the model prediction.

View Article and Find Full Text PDF

Application of the 6-SNP elevated LDL-cholesterol polygenic risk score in individuals with familial hypercholesterolemia phenotype from an Argentine population.

Gac Med Mex

January 2025

Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Laboratorio de Lípidos y Aterosclerosis, Ciudad Autónoma de Buenos Aires.

Introduction: LDL-cholesterol greater than 190 mg/dL indicates severe hypercholesterolemia (HS) of monogenic and/or polygenic origin. Genetic risk scores (GRS) evaluate potential polygenic causes.

Objective: we applied a GRS of 6-SNP (GRS-6) in HS individuals.

View Article and Find Full Text PDF

The secrets of the Tübingen Castle kitchen: Friedrich Miescher and the discovery of nuclein, the cornerstone of DNA.

Gac Med Mex

January 2025

Departamento de Anatomía Patológica, Fundación Clínica Médica Sur; Departamento de Biología Celular y Tisular, Escuela de Medicina, Universidad Panamericana. Mexico City, Mexico.

In 1869, Friedrich Miescher, born in Basel, Switzerland, discovered a previously unknown phosphorus-rich substance in the nuclei of pus cells. Conducting his research in a laboratory set up in the kitchen of Tübingen's medieval castle in Germany, and under the guidance by Professor Felix Hoppe-Seyler, Miescher primarily focused on the composition of cell nuclei. He obtained nuclear material by washing pus cells from surgical bandages provided by a nearby hospital.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!