Selenium, an essential biological trace element present in both prokaryotic and eukaryotic cells, exerts its regulatory effect in a variety of cellular events, including cell growth, survival, and death. Selenium compounds have been shown in different cell lines to inhibit apoptosis by several mechanisms. Serine/threonine phosphatases (STPs) are potentially important in selenite-induced apoptosis because of their role in regulation of diverse set of cellular processes. In this study, the regulatory role of STPs in selenite-induced apoptosis has been implied by the use of two specific inhibitors: ocadaic acid and calyculin A. Our results show a decrease in cell density in HepG2 cells under selenite treatment. Resulting specific enzyme activities showed a concentration-dependent increase in all three phosphatase activities after 24 h in cells treated with 5 microM selenite and these activities decreased at 48 and 72 h. However, in cells treated with 10 microM selenite, PP2A and PP2B decreased at 48 h, whereas PP2C activity did not change at this dose. In cells treated with 25 microM, there was not a significant change in PP2C activity. These data suggest that the most specific response to selenite treatment was in PP2A and PP2B activities in a dose-dependent manner. Our results with OA and Cal-A further support the view that PP1 and PP2A might act as negative regulators of growth. With these data, we have first demonstrated the role of serine/threonine protein phosphatases in the signaling pathway of selenite-induced apoptosis and resulting cytotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02698084DOI Listing

Publication Analysis

Top Keywords

selenite treatment
12
selenite-induced apoptosis
12
cells treated
12
treated microm
12
serine/threonine protein
8
protein phosphatases
8
hepg2 cells
8
cells selenite
8
stps selenite-induced
8
microm selenite
8

Similar Publications

Rapid Determination of Organic and Inorganic Selenium in Poultry Tissues by Internal Extractive Electrospray Ionization Mass Spectrometry.

Anal Chem

January 2025

The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China.

An online reactive internal extraction electrospray ionization (iEESI) method was developed for the rapid determination of organic and inorganic speciation information for selenium in poultry tissue samples without complex sample pretreatment. The addition of citric acid as a reducing agent to the internal extraction solvent of methanol/acetic acid (99:1, V/V) for iEESI resulted in the reduction of selenate in the sample to selenite, accompanied by the production of malic acid as an oxidation product. The quantitative analysis of selenate was conducted by using malic acid.

View Article and Find Full Text PDF

White-Seeded Culinary Poppy ( L.) Se Biofortification: Oil Quality, Fatty Acid Profile, and Seed Yield.

Plants (Basel)

December 2024

Department of Plant Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia.

The culinary poppy ( L.) has been used for centuries in everyday diets, especially for food, but also as a non-food source of health-promoting ingredients. In the present study, a field trial was set with white-seeded poppy varieties collected from farmers in Croatia.

View Article and Find Full Text PDF

This study focuses on the effects of different levels of sodium selenite on the growth, selenium content, and antioxidant capacity of black soldier fly (Hermetia illucens). The experiment used different doses of sodium selenite for treatment, including a basic diet with no supplements (control) and diets supplemented with 10 mg/kg (Se10), 20 mg/kg (Se20), 30 mg/kg (Se30), and 40 mg/kg (Se40) sodium selenite, and results show that sodium selenite supplementation significantly increases selenium content and improves selenium utilization and antioxidant capacity (P < 0.05).

View Article and Find Full Text PDF

Background: Antibiotic resistance in various microorganisms has become one of the most serious health problems worldwide. The use of nanoparticles in combination with conventional antibiotics is one of the recent efforts to overcome these challenges. This study aims to synthesize and evaluate the possibility of using amikacin-loaded selenium nanoparticles as antibacterial agent against multidrug-resistant , that causes bovine mastitis.

View Article and Find Full Text PDF

Introduction: Selenium nanoparticles (SeNPs) are recently emerging as promising anticancer agents because of their high bioavailability, low toxicity and remarkable anticancer activities. However, the application of SeNPs in anticancer has been limited due to instability. Herein, Capsaicin (Cap), a natural active compound found in chili peppers with favorable anticancer activity, was modified with SeNPs to prepare Cap-decorated SeNPs (Cap@SeNPs), and the antiproliferative effect and mechanism of Cap@SeNPs in HepG2 were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!