The Escherichia coli hygromycin phosphotransferase (hph) gene, which confers hygromycin resistance, is commonly used as a dominant selectable marker in genetically modified bacteria, fungi, plants, insects, and mammalian cells. Expression of the hph gene has rarely been reported to induce effects other than those expected. Hygromycin B is the most common dominant selectable marker used in the molecular manipulation of Histoplasma capsulatum in the generation of knockout strains of H. capsulatum or as a marker in mutant strains. hph-expressing organisms appear to have no defect in long-term in vitro growth and survival and have been successfully used to exploit host-parasite interaction in short-term cell culture systems and animal experiments. We introduced the hph gene as a selectable marker together with the gene encoding green fluorescent protein into wild-type strains of H. capsulatum. Infection of mice with hph-expressing H. capsulatum yeast cells at sublethal doses resulted in lethality. The lethality was not attributable to the site of integration of the hph construct into the genomes or to the method of integration and was not H. capsulatum strain related. Death of mice was not caused by altered cytokine profiles or an overwhelming fungal burden. The lethality was dependent on the kinase activity of hygromycin phosphotransferase. These results should raise awareness of the potential detrimental effects of the hph gene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2168422 | PMC |
http://dx.doi.org/10.1128/EC.00139-07 | DOI Listing |
Methods Mol Biol
December 2024
Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
Protein phosphorylation is an important post-translational modification that regulates almost all cellular processes, such as cellular metabolism, growth, differentiation, signal transduction, and gene regulation. Mass spectrometry, which acts as an automated and sensitive method, enables global analysis of protein phosphorylation. However, several technical challenges need to be addressed when analyzing protein phosphorylation in a global manner.
View Article and Find Full Text PDFNPJ Syst Biol Appl
December 2024
Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, 560012, India.
Dysregulated pH is now recognised as a hallmark of cancer. Recent evidence has revealed that the endosomal pH regulator Na/H exchanger NHE9 is upregulated in colorectal cancer to impose a pseudo-starvation state associated with invasion, highlighting an underexplored mechanistic link between adaptive endosomal reprogramming and malignant transformation. In this study, we use a model that quantitatively captures the dynamics of the core regulatory network governing epithelial mesenchymal plasticity.
View Article and Find Full Text PDFRespir Res
December 2024
Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
Eur J Pharmacol
January 2025
Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China. Electronic address:
Hypoxic pulmonary hypertension (HPH), a prevalent subtype of pulmonary arterial hypertension, is characterized by pulmonary vasoconstriction (HPV) and vascular remodeling, accompanied by inflammatory responses. Recent in vivo studies have shown a critical role of the κ-opioid receptor (κ-OR) in modulating the aforementioned pathological processes. Specifically, macrophage-specific κ-OR-knockout models have shown inflammatory response exacerbation with pulmonary hypertension and vascular remodeling.
View Article and Find Full Text PDFJ Am Heart Assoc
December 2024
Department of Respiratory Medicine The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University Wuxi Jiangsu People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!