Bacterial tRNAs frequently have 4-thiouridine (s(4)U) modification at position 8, which is adjacent to the C13-G22-m(7)G46 base triple in the elbow region of the tRNA tertiary structure. Irradiation with light in the UVA range induces an efficient photocrosslink between s(4)U8 and C13. The temperature dependence of the rate constants for photocrosslinking between the s(4)U8 and C13 has been used to investigate the tRNA conformational energy and structure in Escherichia coli tRNA(Val), tRNA(Phe), and tRNA(fMet) under different conditions. Corrections have been made in the measured rate constants to compensate for differences in the excited state lifetimes due to tRNA identity, buffer conditions, and temperature. The resulting rate constants are related to the rate at which the s(4)U8 and C13 come into the alignment needed for photoreaction; this depends on an activation energy, attributable to the conformational potential energy that occurs during the photoreaction, and on the extent of the structural change. Different photocrosslinking rate constants and temperature dependencies occur in the three tRNAs, and these differences are due both to modest differences in the activation energies and in the apparent s(4)U8-C13 geometries. Analysis of tRNA(Val) in buffers without Mg(2+) indicate a smaller activation energy (~13 kJ mol(-1)) and a larger apparent s(4)U8-C13 distance (~12 A) compared to values for the same parameters in buffers with Mg(2+) (~26 kJ mol(-1) and 0.36 A, respectively). These measurements are a quantitative indication of the strong constraint that Mg(2+) imposes on the tRNA flexibility and structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2040084PMC
http://dx.doi.org/10.1261/rna.656907DOI Listing

Publication Analysis

Top Keywords

rate constants
16
s4u8 c13
12
conformational energy
8
energy structure
8
activation energy
8
apparent s4u8-c13
8
buffers mg2+
8
rate
6
trna
5
structure
4

Similar Publications

In Situ Analysis of Li Plating and Stripping Behaviors Under Dynamic Current Conditions for Realistic Application Scenarios.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.

Lithium metal batteries are considered the holy grail for next-generation high-energy systems. However, lithium anode faces poor reversibility, unsatisfying cyclability and rate capability due to its uncontrollable plating/stripping behavior. While galvanostatic conditions are extensively studied, the behavior under more realistic application scenarios with variable inputs are less explored.

View Article and Find Full Text PDF

Background: The therapeutic armamentarium for heart failure with preserved ejection fraction (HFpEF) remains notably constrained. A factor contributing to this problem could be the scarcity of in vitro models for HFpEF, which hinders progress in developing new therapeutic strategies. Here, we aimed at developing a novel, comorbidity-inspired, human, in vitro model for HFpEF.

View Article and Find Full Text PDF

On the substrate turnover rate of NBCe1 and AE1 SLC4 transporters: structure-function considerations.

Front Physiol

January 2025

Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.

A transport protein's turnover rate (TOR) is the maximum rate of substrate translocation under saturating conditions. This parameter represents the number of transporting events per transporter molecule (assuming a single transport site) per second (s). From this standpoint, a transporter's TOR is similar to an enzyme's catalytic constant.

View Article and Find Full Text PDF

This study, we synthesized a graphene oxide@BiBTC MOF (GO@BiBTC) photocatalyst using a hydrothermal method. The resulting samples were comprehensively characterized using FT-IR, Raman spectra, XRD, SEM, TEM, XPS and UV-Vis spectroscopy. The photodegradation reaction fits the pseudo-first-order kinetics and the deterioration rate constants () value of BiBTC, GO@BiBTC MOF composites were 0.

View Article and Find Full Text PDF

Background: Although varieties in chewing patterns are essential for the transformation of food in mouth and thereby its sensorial perception, there are few reports that show the effect of chewing frequency on food oral processing and its properties.

Objective: The current study tested whether consciously controlled chewing frequency influences the oral processing of habitually consumed foods and their sensory analysis.

Method: Chewing behaviour was analysed during the mastication of mushed potato samples by 20 participants in two separate test sessions, in which they were instructed to chew the sample in their habitual manner (free chewing test) or follow a preprogrammed video animation displayed on a screen, wich guided them to maintain a constant chewing frequency (F-const chewing test).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!