Objective: An initial step in endothelium-derived hyperpolarizing factor-mediated responses is endothelial cell hyperpolarization. Here we address the mechanisms by which cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) contribute to this effect in native and cultured endothelial cells.

Methods And Results: In native CYP2C-expressing endothelial cells, bradykinin elicited a Ca(2+) influx that was potentiated by the soluble epoxide hydrolase inhibitor, 1-adamantyl-3-cyclohexylurea (ACU), and attenuated by CYP inhibition. Similar effects were observed in cultured endothelial cells overexpressing CYP2C9, but not in CYP2C9-deficient cells, and were prevented by the EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid as well as by the cAMP antagonist, Rp-cAMPS. The effects on Ca(2+) were mirrored by prolongation of the bradykinin-induced hyperpolarization. Ruthenium red and the combination of charybdotoxin and apamin prevented the latter effect, suggesting that Trp channel activation increases Ca(2+) influx and prolongs the activation of Ca(2+)-dependent K(+) (K(Ca)) channels. Indeed, overexpression of CYP2C9 enhanced the agonist-induced translocation of a TrpC6-V5 fusion protein to caveolin-1-rich areas of the endothelial cell membrane, which was prevented by Rp-cAMPS and mimicked by 11,12-EET.

Conclusions: Elevated EET levels regulate Ca(2+) influx into endothelial cells and the subsequent activation of K(Ca) channels, via a cAMP/PKA-dependent mechanism that involves the intracellular translocation of Trp channels.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.107.152074DOI Listing

Publication Analysis

Top Keywords

endothelial cells
16
ca2+ influx
12
epoxyeicosatrienoic acids
8
trp channel
8
endothelial cell
8
cultured endothelial
8
kca channels
8
endothelial
7
ca2+
5
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!