Mercury (Hg) isotopes can be used as tracers of Hg biogeochemical pathways in the environment. The photochemical reduction of aqueous Hg species by natural sunlight leads to both mass-dependent fractionation (MDF) of Hg isotopes and mass-independent fractionation (MIF) of the odd-mass isotopes, with the relation between the MIF for the two odd isotopes being distinct for different photoreduction pathways. Large variations in MDF and MIF are observed in fish and provide new insights into the sources and bioaccumulation of Hg in food webs. MIF in fish can also be used to estimate the loss of methylmercury via photoreduction in aquatic ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1148050 | DOI Listing |
Sci Rep
December 2024
Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
Reductive dissolution of manganese oxide (MnO) is a major process that improves the availability of manganese in natural aquatic environments. The extracellular organic matter (EOM) secreted by algae omnipresent in eutrophic waters may affect MnO dissolution thus the fate of organic micropollutants. This study investigates the mechanisms of MnO reductive dissolution mediated by EOM and examines the effects of this process on 17α-ethinylestradiol degradation.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Resources and Environment, Southwest University, Chongqing, 400715, China.
Agricultural organic wastes can leach dissolved organic matter (DOM) into surrounding water bodies, establishing them as significant sources of aquatic DOM. Given the importance of DOM in biogeochemical cycling of mercury (Hg), this DOM may mediate divalent Hg (Hg(II)) reduction, a process that remains poorly understood. This study investigated Hg(II) reduction using DOM derived from six representative agricultural wastes, categorized into livestock manure (chicken, pig, cow) and crop straw (rice, corn, rapeseed), with systematic considerations of the kinetics of reduction processes and the involvement of key free radicals.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China. Electronic address:
Reconfiguration of in situ heterojunction composites without interfacial resistance by substitution of homologous anions for the formation of gradient work function differences inducing the formation of built-in electric field is an effective strategy to enhance the charge separation efficiency. Herein, Te/ZnInS-V (Te/ZIS-V) in situ heterojunction was synthesized by substitution of Te ions for S in ultrathin ZIS containing S vacancies, which can significantly promote photogenerated charge separation, surface electron enrichment, and CO adsorption/activation. The presence of S vacancies and adjacent Te/S double anions, the double active sites constructed by defect engineering promote the desorption of *CO molecules while inhibiting the protonation toward *CHO, which was more favorable for selective CO photoreduction to CO.
View Article and Find Full Text PDFSci Total Environ
October 2024
Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:
Poly/perfluoroalkyl substances (PFAS) are persistent organic pollutants and ubiquitous in aquatic environment, which are hazardous to organisms and human health. Several countries and regions have taken actions to regulate or limit the production and emission of some PFAS. Even though a series of water treatment technologies have been developed for removal of PFAS to eliminate their potential adverse effects, the removal and degradation performance are usually unsatisfactory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!