The detection threshold (DeltaR(50)) of resistive (R) loads is a function of the total background resistance (R(0)). Increased R(0) increases the DeltaR(50), but the ratio DeltaR(50)/R(0) remains constant. The respiratory-related evoked potential (RREP) is elicited only by R loads greater than the cognitive detection threshold, DeltaR(50). We hypothesized that the RREP Nf, P1, and N1 peaks will be elicited only when the added load DeltaR/R(0) is greater than the normal detection threshold, DeltaR(50)/R(0) = 0.30. We also hypothesized that when the R(0) is increased by adding extrinsic R, the RREP will not be elicited if the DeltaR/R(0) is less than the 0.30 ratio. RREPs were recorded with healthy volunteers (n = 20) respiring through a non-rebreathing valve. Three inspiratory R loads that spanned the DeltaR(50)/R(0) = 0.30 detection threshold were presented in two conditions: 1) no added R(0) (R1 < 0.30, R2 > 0.30, R3 > 0.30); and 2) increased R(0) = 13.3 cmH(2)O.l(-1).s (R1 < 0.30, R2 < 0.30, R3 > 0.30). For the control R(0), P1, Nf, and N1 peaks of the RREP were elicited by both R2 and R3, and not present with R1. The increased R(0) decreased R2/R(0) > 1.5 to R2/R(0) < 0.15. With increased R(0), the R1 and R2 loads did not elicit the RREP, but the Nf, P1, and N1 peaks were present for R3. These results demonstrate that the RREP is present if the DeltaR is above the cognitive detection threshold, and the RREP is absent if the load is below the detection threshold. When the R(0) is increased to make the DeltaR/R(0) less than the detection threshold, the DeltaR no longer elicits the RREP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.01232.2006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!