In adults, the adipocyte-derived hormone, leptin, regulates food intake and body weight principally via the hypothalamic arcuate nucleus (ARC). During early postnatal development, leptin functions to promote the outgrowth of neuronal projections from the ARC, whereas a selective insensitivity to the effects of leptin on food intake appears to exist. To investigate the mechanisms underlying the inability of leptin to regulate food intake during early development, leptin signaling was analyzed both in vitro using primary cultures of rat embryonic ARC neurones and in vivo by challenging early postnatal rats with leptin. In neuronal cultures, despite the presence of key components of the leptin signaling pathway, no detectable activation of either signal transducer and activator of transcription 3 or the MAPK pathways by leptin was detected. However, leptin down-regulated mRNA levels of proopiomelanocortin and neuropeptide Y and decreased somatostatin secretion. Leptin challenge in vivo at postnatal d (P) 7, P14, P21, and P28 revealed that, in contrast to adult and P28 rats, mRNA levels of neuropeptide Y, proopiomelanocortin, agouti-related peptide and cocaine- and amphetamine-regulated transcript were largely unaffected at P7, P14, and P21. Furthermore, leptin stimulation increased the suppressor of cytokine signaling-3 mRNA levels at P14, P21, and P28 in several hypothalamic nuclei but not at P7, indicating that selective leptin insensitivity in the hypothalamus is coupled to developmental shifts in leptin receptor signaling. Thus, the present study defines the onset of leptin sensitivity in the regulation of energy homeostasis in the developing hypothalamus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2007-0822 | DOI Listing |
Breast Cancer Res
January 2025
Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
Obesity is a modifiable risk factor for breast cancer. Yet, how obesity contributes to cancer initiation is not fully understood. The goal of this study was to determine if the body mass index (BMI) and metabolic hallmarks of obesity are related to DNA damage in normal breast tissue.
View Article and Find Full Text PDFSevere sepsis is cognate with life threatening multi-organ dysfunction. There is a disturbance in endocrine functions with alterations in several hormonal pathways. It has frequently been linked with dysfunction in the hypothalamic pituitary-adrenal axis (HPA).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Internal Medicine /Allergy and Clinical Immunology, Ain- Shams University, Cairo, Egypt.
Female obesity is a worldwide health issue linked to chronic metabolic low-grade inflammation (metaflammation) causing multiple obesity-related co-morbid conditions. We aimed to assess the serum levels of wingless integration site family member 5 A (Wnt5a), leptin, and tumor necrosis factor-alpha (TNF-α) as markers of obesity-associated metaflammation and investigate the association with toll-like receptors2 (TLR2) gene (Arg753Gln) single nucleotide polymorphism (SNP) among Egyptian females. The study included 60 females with obesity and 30 matched controls.
View Article and Find Full Text PDFEBioMedicine
January 2025
Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada. Electronic address:
Background: Immunosenescence is accelerated by chronic infectious and autoimmune diseases and could contribute to the pathobiology of multiple sclerosis (MS). How MS and disease-modifying therapies (DMTs) impact age-sensitive immune biomarkers is only partially understood.
Methods: We analyzed 771 serum samples from 147 healthy controls and 289 people with MS (PwMS) by multiplex immunoassays.
J Clin Invest
January 2025
Lindsley F. Kimball Research Institute, New York Blood Center, New York, United States of America.
The bone marrow (BM) niche is critical in regulating hematopoiesis, and sexual dimorphism and its underlying mechanism in BM niche and its impact on hematopoiesis are not well understood. We show that male mice exhibited a higher abundance of leptin-receptor-expressing mesenchymal stromal cells (LepR-MSCs) compared to female mice. Sex-mismatched co-culture and BM transplantation showed that the male BM niche provided superior support for in vitro colony formation and in vivo hematopoietic engraftment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!