Fluorescence quenching of CdSe quantum dots by nitroaromatic explosives and their relative compounds.

Spectrochim Acta A Mol Biomol Spectrosc

School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.

Published: July 2008

CdSe quantum dots (QDs) were synthesized in oleic acid and octadecene medium under high-temperature and dispersed in chloroform. Nitroaromatic explosives and their relative compounds, 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), nitrobenzene (NB), 2,4-dinitrochlorobenzene (DNBCl) and p-nitrotoluene (NT) can obviously cause the fluorescence quenching of the synthesized QDs. Under the optimum conditions, a nonlinear response was observed over the concentration range of 10(-8) to 10(-5) M for them all. The modified Stern-Volmer quenching equations of ln I(0)/I versus C show a good linear relation in 10(-5) M order of magnitude, and the detection limits approach 10(-6) to 10(-7) M.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2007.07.054DOI Listing

Publication Analysis

Top Keywords

fluorescence quenching
8
cdse quantum
8
quantum dots
8
nitroaromatic explosives
8
explosives relative
8
relative compounds
8
quenching cdse
4
dots nitroaromatic
4
compounds cdse
4
dots qds
4

Similar Publications

The environmental impact of chemicals used in aquaculture, particularly nitrofurantoin, has raised global concern. Nitrofurantoin, a broad-spectrum antimicrobial, is commonly used in aquaculture despite safety risks. Determination of nitrofurantoin in water samples of fish ponds is necessary to ensure the safety and quality of seafood.

View Article and Find Full Text PDF

Fluorescent iron nanoclusters are emerging fluorescent nanomaterials. Herein, we synthesized hemoglobin-coated iron nanoclusters (Hb-Fe NCs) with a significant fluorescence emission peak at 615 nm and investigated the inner-filter effect of fluorescence induced by a manganese dioxide nanosheet (MnO NS). The fluorescence quenching of Hb-Fe NCs by a MnO NS can be significantly reversed by the addition of ascorbic acid.

View Article and Find Full Text PDF

This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and ()-3-(2-(1-benzo[]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies.

View Article and Find Full Text PDF

In this study we report on the efficiency of a furane-indole-chromenone-based organic derivative () as a photocatalyst in the α-arylation of enol acetate upon LED irradiation at 405 nm, and as a photoinitiator/photocatalyst in the free radical polymerization of an acrylate group in the presence of -(4--butylphenyl)iodonium hexafluorophosphate (Iod) as an additive, or in the presence of both Iod and ethyl-4-(dimethyl amino) benzoate (EDB) under LED irradiation at 365 nm. The photochemical properties of this new light-sensitive compound are described, and the wide redox window (3.27 eV) and the high excited-state potentials / (+2.

View Article and Find Full Text PDF

The potential health risks posed by the coexistence of nanoplastics (NPs) and triclosan (TCS) have garnered significant attention. However, the effects and underlying mechanisms of NPs and TCS on key functional proteins at the molecular level remain poorly understood. This study reports the effect of polystyrene nanoplastics (PSNPs) on the binding of TCS to human serum albumin (HSA) using multispectral methods and molecular simulation systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!