Protein phosphorylation regulates many aspects of cellular function, including cell proliferation, migration, and signal transduction. An efficient strategy to isolate phosphopeptides from a pool of unphosphorylated peptides is essential to global characterization using mass spectrometry. We describe an approach employing isotope tagging reagents for relative and absolute quantification (iTRAQ) labeling to compare quantitatively commercial and prototypal immobilized metal affinity chelate (IMAC) and metal oxide resins. Results indicate a prototype iron chelate resin coupled to magnetic beads outperforms either the Ga(3+)-coupled analog, Fe(3+), or Ga(3+)-loaded, iminodiacetic acid (IDA)-coated magnetic particles, Ga(3+)-loaded Captivate beads, Fe(3+)-loaded Poros 20MC, or zirconium-coated ProteoExtract magnetic beads. For example, compared with Poros 20MC, the magnetic metal chelate (MMC) studied here improved phosphopeptide recovery by 20% and exhibited 60% less contamination from unphosphorylated peptides. With respect to efficiency and contamination, MMC performed as well as prototypal magnetic metal oxide-coated (TiO(2)) beads (MMO) or TiO(2) chromatographic spheres, even if the latter were used with 2,5-dihydroxybenzoic acid (DHB) procedures. Thus far, the sensitivity of the new prototypes reaches 50 fmol, which is comparable to TiO(2) spheres. In an exploration of natural proteomes, tryptic (phospho)peptides captured from stable isotopic labeling with amino acids in cell culture (SILAC)-labeled immunocomplexes following EGF-treatment of 5 x 10(7) HeLa cells were sufficient to quantify stimulated response of over 60 proteins and identify 20 specific phosphorylation sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jasms.2007.08.001DOI Listing

Publication Analysis

Top Keywords

protein phosphorylation
8
unphosphorylated peptides
8
magnetic beads
8
poros 20mc
8
magnetic metal
8
magnetic
5
quantitative comparison
4
comparison imac
4
tio2
4
imac tio2
4

Similar Publications

Background: The Arp2/3 complex is a key regulator of tumor metastasis, and targeting its subunits offers potential for anti-metastatic therapy. However, the expression profiles, prognostic relevance, and diagnostic value of its subunits across cancers remain poorly understood. This study aims to investigate the clinical relevance of Arp2/3 complex subunits, particularly ARPC1A, in pan-cancer, and to further analyze the potential biological mechanisms of ARPC1A, as well as its association with immune infiltration and chemotherapy drug sensitivity.

View Article and Find Full Text PDF

While durable antibody responses from long-lived plasma cell (LLPC) populations are important for protection against pathogens, LLPC may be harmful if they produce antibodies against self-proteins or self-nuclear antigens as occurs in autoimmune diseases such as systemic lupus erythematosus (SLE). Thus, the elimination of autoreactive LLPC may improve the treatment of antibody-driven autoimmune diseases. However, LLPC remain a challenging therapeutic target.

View Article and Find Full Text PDF

a member of the family, is known for its diverse biological activities, including anti-inflammatory properties. The mechanisms through which polysaccharide (LTP) induces autophagy, however, remain largely unexplored. This study aims to elucidate the role of LTP in autophagy induction and its efficacy in mitigating inflammation within macrophages.

View Article and Find Full Text PDF

Genes and proteins expression profile of 2D vs 3D cancer models: a comparative analysis for better tumor insights.

Cytotechnology

April 2025

University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413 India.

When juxtaposed with 2D cell culture models, multicellular tumor spheroids demonstrate a capacity to faithfully replicate certain features inherent to solid tumors. These include spatial architecture, physiological responses, the release of soluble mediators, patterns of gene expression, and mechanisms of drug resistance. The morphological and behavioural similarities between 3D-cultured cells and cells within tumor masses highlight the potential of these models in studying cancer biology and drug responses.

View Article and Find Full Text PDF

Sulforaphane acutely activates multiple starvation response pathways.

Front Nutr

January 2025

Aging and Metabolism Research Program, Oklahoma City, OK, United States.

Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has demonstrated anti-cancer, anti-microbial and anti-oxidant properties. SFN ameliorates various disease models in rodents (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!