Elucidation of the RNA target of linezolid by using a linezolid-neomycin B heteroconjugate and genomic SELEX.

Bioorg Med Chem

Department of Chemistry and Education, Seoul National University, Seoul 151-742, Republic of Korea.

Published: December 2007

A covalently modified heteroconjugate between linezolid and neomycin B leads to an enhanced and more specific binding affinity to hairpin RNA targets in comparison to neomycin B itself. This heteroconjugate was used as a lure to select linezolid-specific hairpin RNA from an Escherichia coli genome RNA. The selected RNA obtained after eight cycles not only has typical stem-loop structures but also includes known sequences of the linezolid binding site. The results of RNA footprinting show that the binding site of the heteroconjugate encompasses both stem and loop regions, suggesting that the possible binding site for linezolid is in the terminal loop. In addition, findings from application of a surface plasmon resonance assay clearly demonstrate that linezolid binds to selected hairpin RNA in a highly specific manner with a low millimolar affinity. The results suggest that heteroconjugates might represent a generally useful approach in studies aimed at uncovering loop-specific RNA binding ligands that would be otherwise difficult to identify owing to their weak affinities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2007.08.053DOI Listing

Publication Analysis

Top Keywords

hairpin rna
12
binding site
12
rna
7
linezolid
5
binding
5
elucidation rna
4
rna target
4
target linezolid
4
linezolid linezolid-neomycin
4
heteroconjugate
4

Similar Publications

Sensitive fluorescent detection of SARS-CoV-2 RNA using an enzymatic-based method.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama 6201-001 Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama 6201-001 Covilhã, Portugal. Electronic address:

Rapid, quantitative, and sensitive detection of viral oligonucleotides can help to diagnose the infection before symptoms occur, monitor disease progression, and identify viral subtypes. A one-pot, simple, rapid hairpin-mediated nicking enzymatic signal amplification (HNESA) method was previously developed for nucleic acids detection. In the present work, this method was applied for the detection of SARS-CoV-2 RNA by designing an assistant probe (AP) that contains the complementary sequence for the target, the sequence of hybridization with the loop region of the molecular beacon (MB), and the recognition site of the nicking endonuclease Nt.

View Article and Find Full Text PDF

Modulating gene expression as a strategy to investigate thyroid cancer biology.

Arch Endocrinol Metab

January 2025

Universidade de São Paulo Instituto de Ciências Biomédicas Departamento de Biologia Celular e do Desenvolvimento São PauloSP Brasil Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil.

Modulating the expression of a coding or noncoding gene is a key tool in scientific research. This strategy has evolved methodologically due to advances in cloning approaches, modeling/algorithms in short hairpin RNA (shRNA) design for knockdown efficiency, and biochemical modifications in RNA synthesis, among other developments. Overall, these modifications have improved the ways to either reduce or induce the expression of a given gene with efficiency and facility for implementation in the lab.

View Article and Find Full Text PDF

RNA recognition by minimal ProQ from Neisseria meningitidis.

RNA

January 2025

Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland

Neisseria meningitidis minimal ProQ is a global RNA binding protein belonging to the family of FinO-domain proteins. The N. meningitidis ProQ consists only of the FinO domain accompanied by short N- and C-terminal extensions.

View Article and Find Full Text PDF

functional validation of anti-CD19 chimeric antigen receptor T cells expressing lysine-specific demethylase 1 short hairpin RNA for the treatment of diffuse large B cell lymphoma.

Front Immunol

January 2025

Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.

View Article and Find Full Text PDF

Background: Cancer-associated fibroblasts (CAFs) are key components of the pancreatic adenocarcinoma (PAAD) tumor microenvironment (TME), where they promote tumor progression and metastasis through immunosuppressive functions. Although significant progress has been made in understanding the crosstalk between cancer cells and CAFs, many underlying mechanisms remain unclear. Recent studies have highlighted the importance of calcium signaling in enhancing interactions between tumor cells and the surrounding stroma, with the S100 family of proteins serving as important regulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!