Potentiation of the nicotinic acetylcholine receptor by aluminum in mammalian neurons.

Neuroscience

Department of Physiology, Xianning College, Xianning 437100, PR China.

Published: October 2007

Aluminum (Al(3+)), a known neurotoxic substance, has long been implicated in the pathogenesis of Alzheimer's disease and other neurodegenerative diseases. Al(3+) targets many ligand-gated and voltage-gated ion channels and modulates their functions. In the present study, the actions of Al(3+) on the nicotinic acetylcholine receptor (nAChR) were investigated by whole-cell patch clamp technique in acutely isolated rat trigeminal ganglion neurons. We observed that Al(3+) potentiated nicotine-evoked inward currents in a concentration-dependent manner (10-1000 microM). The effects of Al(3+) on nicotine-evoked currents were voltage independent. Al(3+) appeared to increase the affinity of nicotine to nAChR but not the efficacy. Al(3+) reduced the agonist concentration producing a half-maximal response (EC(50)) for nicotine from 74.4+/-1.9 microM to 32.9+/-2.6 microM, but did not alter the threshold nor maximal response. On the contrary, another trivalent cation, Ga(3+), had little effect on nicotine-evoked currents. The present results indicated that Al(3+) enhanced the function of nAChR and this potentiation might underlie the neurological alteration induced by Al(3+).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2007.07.018DOI Listing

Publication Analysis

Top Keywords

nicotine-evoked currents
12
al3+
9
nicotinic acetylcholine
8
acetylcholine receptor
8
potentiation nicotinic
4
receptor aluminum
4
aluminum mammalian
4
mammalian neurons
4
neurons aluminum
4
aluminum al3+
4

Similar Publications

Nicotine intake is likely to result from a balance between the rewarding and aversive properties of the drug, yet the individual differences in neural activity that control aversion to nicotine and their adaptation during the addiction process remain largely unknown. Using a two-bottle choice experiment, we observed considerable heterogeneity in nicotine-drinking profiles in isogenic adult male mice, with about half of the mice persisting in nicotine consumption even at high concentrations, whereas the other half stopped consuming. We found that nicotine intake was negatively correlated with nicotine-evoked currents in the interpeduncular nucleus (IPN), and that prolonged exposure to nicotine, by weakening this response, decreased aversion to the drug, and hence boosted consumption.

View Article and Find Full Text PDF

Ticks are vectors of many human and animal pathogens, and represent a major threat to public health. In recent years, an increase in tick-borne diseases has been observed, and new strategies are therefore needed in order to control tick numbers and reduce human tick bites. In the present study, we adapted the previous tick repellency bioassay based on the exploration behavior of the tick, using the ToxTrac software and video-tracking, to compare the repellent effect of two compounds on the tick Ixodes ricinus: N,N-diethyl-methyl-m-toluamide (DEET), and butenolide, flupyradifurone (FLU).

View Article and Find Full Text PDF

Dorsal unpaired median (DUM) neurons, are a class of insect neurosecretory cells, which are involved in the control of several functions, such as excretion and reproduction, or the release of neurohormones. Previous studies demonstrated that they express different nicotinic acetylcholine receptor subtypes, in particular α-bungarotoxin-insensitive receptors, with nAChR1 and nAChR2 subtypes. Here, we demonstrated that pulse application of 1 mM nicotine (300 ms pulse duration) induced inward currents which were reduced under bath application of 15 µM calmidazolium, a calmodulin inhibitor.

View Article and Find Full Text PDF

Tobacco smoking-related diseases are estimated to kill more than 8 million people/year and most smokers are willing to stop smoking. The pharmacological approach to aid smoking cessation comprises nicotine replacement therapy (NRT) and inhibitors of the nicotinic acetylcholine receptor, which is activated by nicotine. Common side effects of oral NRT products include hiccoughs, gastrointestinal disturbances and, most notably, irritation, burning and pain in the mouth and throat, which are the most common reasons for premature discontinuation of NRT and termination of cessation efforts.

View Article and Find Full Text PDF

The functional expression of the cockroach Pameα7 nicotinic acetylcholine receptor subunit has been previously studied, and was found to be able to form a homomeric receptor when expressed in oocytes. In this study, we found that the neonicotinoid insecticide imidacloprid is unable to activate the cockroach Pameα7 receptor, although thiacloprid induces low inward currents, suggesting that it is a partial agonist. In addition, the co-application or 5 min pretreatment with 10 µM imidacloprid increased nicotine current amplitudes, while the co-application or 5 min pretreatment with 10 µM thiacloprid decreased nicotine-evoked current amplitudes by 54% and 28%, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!