The in vitro cell expansion of autologous chondrocytes is of high interest in regenerative medicine since these cells can be used to treat joint cartilage defects. In order to preserve chondrocyte phenotype, while optimizing adhesion on microspheres, several processing parameters for the microsphere synthesis were varied. In this study three different polylactide-co-glycolides were used with differing lactide-glycolide ratios (85:15 and 50:50) and differing inherent viscosities. An emulsion route was established, where the polymer was dissolved in chloroform and then injected into a stirred polyvinyl alcohol-water solution at different polymer concentrations and different stirring velocities to produce microspheres with varying diameters. The sphere size distribution and morphology was analyzed using image processing software on SEM pictures. Based on previous experiments with commercial microspheres, three optimum samples were selected for further investigations. The degradation of the microspheres was determined in a long-term experiment in culture medium for 3 months. Adherent cells were characterized after 3 and 5 days by FDA+EB vital staining and in SEM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioeng.2007.08.013 | DOI Listing |
ACS Nano
January 2025
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
Core-shell structures demonstrate superior capability in customizing properties across multiple scales, offering valuable potential in catalysis, medicine, and performance materials. Integrating functional nanoparticles in a spatially controlled manner is particularly appealing for developing sophisticated architectures that support heterogeneous characteristics and tandem reactions. However, creating such complex structures with site-specific features remains challenging due to the dynamic microenvironment during the shell-forming process, which considerably impacts colloidal particle assembly.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
Chitosan (CS) is a versatile polysaccharide with numerous inherent biological activity, while the lack of amphiphilicity limits its application in emulsion-based systems. In this study, erythorbyl myristate (EM) with interfacial activity was chemically modified to 5-O-succinyl EM (EMS) and grafted onto CS to improve the emulsifying properties. The grafting reaction was conducted by the catalysis of protease, with the progress of the reaction monitored by HPLC analysis and UV absorbance measurement.
View Article and Find Full Text PDFAAPS PharmSciTech
December 2024
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
Int J Biol Macromol
January 2025
State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
Adv Colloid Interface Sci
January 2025
Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran. Electronic address:
Proteins from plant sources including legumes, cereals and oilseeds are gaining attention due to their suitability for sustainable production, functionality, and positive consumer perception. On the other hand, polyphenols (PPs) are receiving considerable attention as natural ingredients in the human diet due to their potent antioxidant and anti-inflammatory properties. Recent studies indicate that the emulsifying properties of plant proteins (PLPs) can be improved after modification through covalent and/or non-covalent interactions with PPs due to the changes in the conformation and/or the surface chemistry of the proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!