Bupropion inhibits the cellular effects of nicotine in the ventral tegmental area.

Biochem Pharmacol

Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA.

Published: October 2007

Each year, tobacco use causes over 4 million deaths worldwide and billions of dollars are spent on treatment for tobacco-related illness. Bupropion, an atypical antidepressant, improves the rates of successful smoking cessation, however, the mechanisms by which bupropion reduces cigarette smoking and depression are unknown. Here we show that clinical concentrations of bupropion inhibit nicotine's stimulatory effects on brain reward areas. Many drugs of abuse, including nicotine, stimulate dopamine (DA) release in the mesoaccumbens reward system. Nicotinic acetylcholine receptors in the ventral tegmental area (VTA) mediate nicotine's stimulation of DA release, as well as its rewarding effects. Nicotinic receptors are expressed by excitatory and inhibitory neurons that control DA neuron excitability, and by the DA neurons themselves. Bupropion is a broad-spectrum non-competitive nicotinic receptor antagonist. Here we report that pre-treatment of brain slices with a clinically relevant concentration of bupropion dramatically reduces the effects of nicotine on DA neuron excitability. Nicotinic receptors on VTA DA neurons and their synaptic inputs are inhibited by 75 - 95% after bupropion treatment. We also find that bupropion alone reduces GABAergic transmission to DA neurons, thereby diminishing tonic inhibition of these neurons. This increases DA neuron excitability during bupropion treatment in the absence of nicotine, and may contribute to bupropion's antidepressant actions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2067251PMC
http://dx.doi.org/10.1016/j.bcp.2007.07.034DOI Listing

Publication Analysis

Top Keywords

neuron excitability
12
bupropion
9
effects nicotine
8
ventral tegmental
8
tegmental area
8
bupropion reduces
8
nicotinic receptors
8
bupropion treatment
8
neurons
5
bupropion inhibits
4

Similar Publications

Parkinson's disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson's disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson's disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation.

View Article and Find Full Text PDF

Developmental and epileptic encephalopathies (DEEs), a class of devastating neurological disorders characterized by recurrent seizures and exacerbated by disruptions to excitatory/inhibitory balance in the brain, are commonly caused by mutations in ion channels. Disruption of, or variants in, were implicated as causal for a set of DEEs, but the underlying mechanisms were clouded because is expressed in both excitatory and inhibitory neurons, undergoes extensive alternative splicing producing multiple isoforms with distinct functions, and the overall roles of FGF13 in neurons are incompletely cataloged. To overcome these challenges, we generated a set of novel cell-type-specific conditional knockout mice.

View Article and Find Full Text PDF

Recent studies, typically using patient cerebrospinal fluid (CSF), have suggested that different autoantibodies (Aabs) acting on their respective receptors, may underlie neuropsychiatric disorders. The GluN1 (NR1) subunit of the N-methyl-D-aspartate receptor (NMDAR) has been identified as a target of anti-NMDAR Aabs in a number of central nervous system (CNS) diseases, including encephalitis and autoimmune epilepsy. However, the role or the nature of Aabs responsible for effects on neuronal excitability and synaptic plasticity is yet to be established fully.

View Article and Find Full Text PDF

Molecular Basis of Na, K-ATPase Regulation of Diseases: Hormone and FXYD2 Interactions.

Int J Mol Sci

December 2024

Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil.

The Na, K-ATPase generates an asymmetric ion gradient that supports multiple cellular functions, including the control of cellular volume, neuronal excitability, secondary ionic transport, and the movement of molecules like amino acids and glucose. The intracellular and extracellular levels of Na and K ions are the classical local regulators of the enzyme's activity. Additionally, the regulation of Na, K-ATPase is a complex process that occurs at multiple levels, encompassing its total cellular content, subcellular distribution, and intrinsic activity.

View Article and Find Full Text PDF

Ion Channels in Odor Information Processing of Neural Circuits of the Vertebrate Olfactory Bulb.

Int J Mol Sci

December 2024

Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.

Olfactory disorders and their associated complications present a considerable challenge to an individual's quality of life and emotional wellbeing. The current range of treatments, including surgical procedures, pharmacological interventions, and behavioral training, frequently proves ineffective in restoring olfactory function. The olfactory bulb (OB) is essential for odor processing and plays a pivotal role in the development of these disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!