Background: Perturbations in cell-cell interactions are a key feature of cancer. However, little is known about the systematic effects of cell-cell interaction on global gene expression in cancer.
Results: We used an ex vivo model to simulate tumor-stroma interaction by systematically co-cultivating breast cancer cells with stromal fibroblasts and determined associated gene expression changes with cDNA microarrays. In the complex picture of epithelial-mesenchymal interaction effects, a prominent characteristic was an induction of interferon-response genes (IRGs) in a subset of cancer cells. In close proximity to these cancer cells, the fibroblasts secreted type I interferons, which, in turn, induced expression of the IRGs in the tumor cells. Paralleling this model, immunohistochemical analysis of human breast cancer tissues showed that STAT1, the key transcriptional activator of the IRGs, and itself an IRG, was expressed in a subset of the cancers, with a striking pattern of elevated expression in the cancer cells in close proximity to the stroma. In vivo, expression of the IRGs was remarkably coherent, providing a basis for segregation of 295 early-stage breast cancers into two groups. Tumors with high compared to low expression levels of IRGs were associated with significantly shorter overall survival; 59% versus 80% at 10 years (log-rank p = 0.001).
Conclusion: In an effort to deconvolute global gene expression profiles of breast cancer by systematic characterization of heterotypic interaction effects in vitro, we found that an interaction between some breast cancer cells and stromal fibroblasts can induce an interferon-response, and that this response may be associated with a greater propensity for tumor progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375029 | PMC |
http://dx.doi.org/10.1186/gb-2007-8-9-r191 | DOI Listing |
Mol Cancer
December 2024
Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
Cancer-associated fibroblasts (CAFs) exert multiple tumor-promoting functions and are key contributors to drug resistance. The mechanisms by which specific subsets of CAFs facilitate oxaliplatin resistance in colorectal cancer (CRC) have not been fully explored. This study found that THBS2 is positively associated with CAF activation, epithelial-mesenchymal transition (EMT), and chemoresistance at the pan-cancer level.
View Article and Find Full Text PDFCancer Cell Int
December 2024
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
BMC Complement Med Ther
December 2024
Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
Background: A precise observation is that the cervix's solid tumors possess hypoxic regions where the oxygen concentration drops below 1.5%. Hypoxia negatively impacts the host's immune system and significantly diminishes the effectiveness of several treatments, including radiotherapy and chemotherapy.
View Article and Find Full Text PDFTrends Cancer
December 2024
Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA; Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:
Metastasis is responsible for most cancer-related deaths. Different cancers have their own preferential sites of metastases, a phenomenon termed metastatic organotropism. The mechanisms underlying organotropism are multifactorial and include the generation of a pre-metastatic niche (PMN), metastatic homing, colonization, dormancy, and metastatic outgrowth.
View Article and Find Full Text PDFTrends Cancer
December 2024
Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA. Electronic address:
Chronic damage following oncogene induction or cancer therapy can produce cellular senescence. Senescent cells not only exit the cell cycle but communicate damage signals to their environment that can trigger immune responses. Recent work has revealed that senescent tumor cells are highly immunogenic, leading to new ways to activate antitumor immunosurveillance and potentiate T cell-directed immunotherapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!