Treponema denticola major outer sheath protein (Msp) inhibits neutrophil chemotaxis in vitro, but key regulatory mechanisms have not been identified. Because the Rac small GTPases regulate directional migration in response to chemoattractants, the objective was to analyse the effects of Msp on formyl-methionyl-leucyl-phenylalanine (fMLP)-mediated neutrophil polarization and Rac activation in murine neutrophils. Msp pretreatment of neutrophils inhibited both polarization and chemotactic migration in response to fMLP. Activation of small GTPases was measured by p21 binding domain (PBD) pulldown assays, followed by Western analysis, using monoclonal anti-Rac1, anti-Rac2, anti-cdc42 and anti-RhoA antibodies. Enriched native Msp selectively inhibited fMLP-stimulated Rac1 activation in a concentration-dependent manner, but did not affect Rac2, cdc42 or RhoA activation. Murine neutrophils transfected with vectors expressing fluorescent probes PAK-PBD-YFP and PH-AKT-RFP were used to determine the effects of Msp on the localization of activated Rac and PI3 kinase products. Real-time confocal images showed that Msp inhibited the polarized accumulation of activated Rac and PI3-kinase products upon exposure to fMLP. The findings indicate that T. denticola Msp inhibition of neutrophil polarity may be due to the selective suppression of the Rac1 pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1462-5822.2007.01045.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!