Background And Aim: The mechanism which protects the biliary and intestinal mucosa from the detergent properties of bile acids is not fully understood. We employed three contrasting in vitro model systems (human red blood cells, polarized intestinal [Caco-2] cells, and synthetic liposomes), to compare the efficacy of saturated and unsaturated phosphatidylcholine (PC) to protect cells and membranes from bile salt injury.

Methods: Hemolysis of red blood cells, electrical resistance across confluent monolayers of Caco-2 cells, and disruption of synthetic PC liposomes were assessed after incubation with varying concentrations of bile salt (sodium deoxycholate) alone or in the presence of saturated or unsaturated PC.

Results: The hemolytic activity of deoxycholate on red blood cells was observed at > or =2 mM, and could be blocked by equimolar concentration or greater of both saturated or unsaturated PC. In contrast, exposure of Caco-2 cells to deoxycholate at > or =0.8 mM induced a maximal decrease in resistance, which was reversed by > or =0.8 mM unsaturated PC or 5 mM saturated PC. Similarly, synthetic liposomes were permeabilized by 0.8 mM deoxycholate and were protected by a lower concentration of unsaturated PC (2 mM) than saturated (5 mM).

Conclusions: Cells can show variable resistance to bile salt toxicity. Extracellular PC, especially in the unsaturated state, can directly protect cell and artificial membranes from bile salt injury. These findings support a role for biliary PC in the formation of mixed micelles that have low cytotoxic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1440-1746.2007.05153.xDOI Listing

Publication Analysis

Top Keywords

bile salt
20
red blood
12
blood cells
12
synthetic liposomes
12
saturated unsaturated
12
salt toxicity
8
cells
8
membranes bile
8
caco-2 cells
8
unsaturated saturated
8

Similar Publications

Bile salts are biosurfactants released into the intestinal lumen which play an important role in the solubilisation of fats and certain drugs. Their concentrations vary along the gastrointestinal tract (GIT). This is significant for implementation in physiologically based pharmacokinetic (PBPK) modelling to mechanistically capture drug absorption.

View Article and Find Full Text PDF

Evaluation of the in vitro probiotic properties of Ligilactobacillus salivarius JCF5 and its impact on Jersey yogurt quality.

J Sci Food Agric

January 2025

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China.

Background: Jersey milk, known for its high protein content, is an excellent base for yogurt production. Given that Jersey milk is derived from Jersey cows, this study was to isolate probiotics from Jersey cow feces and investigate their potential as alternative starter cultures for fermenting Jersey milk. Our goal was to develop new starter cultures specifically suited for Jersey yogurt production, while also contributing to the diversity of fermentation agents available for dairy products.

View Article and Find Full Text PDF

Highly Potent New Probiotic Strains from Traditional Turkish Fermented Foods.

Curr Microbiol

January 2025

Department of Nanotechnology Engineering, Abdullah Gul University, Kayseri, Türkiye.

Traditional Turkish fermented foods like boza, pickles, and tarhana are recognized for their nutritional and health benefits, yet the probiotic potential of lactic acid bacteria (LAB) strains isolated from them remains underexplored. Sixty-six LAB strains were isolated from fermented foods using bacterial morphology, Gram staining, and catalase activity. The isolates were differentiated at strain level by RAPD-PCR (Random Amplification of Polymorphic DNA-Polymerase Chain Reaction) and twenty-five strains were selected for further evaluation of acid and bile salt tolerance.

View Article and Find Full Text PDF

Unlabelled: infections (CDI) cause almost 300,000 hospitalizations per year of which ∼15-30% are the result of recurring infections. The prevalence and persistence of CDI in hospital settings has resulted in an extensive collection of clinical isolates and their classification, typically by ribotype. While much of the current literature focuses on one or two prominent ribotypes ( .

View Article and Find Full Text PDF

Unlabelled: Thiosulfate-citrate-bile salts-sucrose (TCBS) agar is a selective and differential media for the enrichment of pathogenic . We observed that an exonuclease VII ( ) mutant of failed to grow on TCBS agar, suggesting that DNA repair mutant strains may be hampered for growth in this selective media. Examination of the selective components of TCBS revealed that bile acids were primarily responsible for toxicity of the mutant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!