Importance of RNA-protein interactions in bacterial ribonuclease P structure and catalysis.

Biopolymers

Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA.

Published: January 2008

Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) complex that catalyzes the metal-dependent maturation of the 5' end of precursor tRNAs (pre-tRNAs) in all organisms. RNase P is comprised of a catalytic RNA (P RNA), and at least one essential protein (P protein). Although P RNA is the catalytic subunit of the enzyme and is active in the absence of P protein under high salt concentrations in vitro, the protein is still required for enzyme activity in vivo. Therefore, the function of the P protein and how it interacts with both P RNA and pre-tRNA have been the focus of much ongoing research. RNA-protein interactions in RNase P serve a number of critical roles in the RNP including stabilizing the structure, and enhancing the affinity for substrates and metal ions. This review examines the role of RNA-protein interactions in bacterial RNase P from both structural and mechanistic perspectives.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.20846DOI Listing

Publication Analysis

Top Keywords

rna-protein interactions
12
interactions bacterial
8
protein
5
bacterial ribonuclease
4
ribonuclease structure
4
structure catalysis
4
catalysis ribonuclease
4
rnase
4
ribonuclease rnase
4
rnase ribonucleoprotein
4

Similar Publications

The Plethora of RNA-Protein Interactions Model a Basis for RNA Therapies.

Genes (Basel)

January 2025

Department of Chemistry, The RNA Institute, University at Albany, SUNY, 1400 Washington Ave Extension, Albany, NY 12222, USA.

The notion of RNA-based therapeutics has gained wide attractions in both academic and commercial institutions. RNA is a polymer of nucleic acids that has been proven to be impressively versatile, dating to its hypothesized RNA World origins, evidenced by its enzymatic roles in facilitating DNA replication, mRNA decay, and protein synthesis. This is underscored through the activities of riboswitches, spliceosomes, ribosomes, and telomerases.

View Article and Find Full Text PDF

Purine-rich element binding protein alpha: a DNA/RNA binding protein with multiple roles in cancers.

Mol Med

January 2025

Nanjing Women and Children's Healthcare Hospital, Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, 123 Tianfei Alley, Mochou Road, Nanjing, China.

Proteins that bind to DNA/RNA are typically evolutionarily conserved with multiple regulatory functions in transcription initiation, mRNA translation, stability of RNAs, and RNA splicing. Therefore, dysregulation of DNA/RNA binding proteins such as purine-rich element binding protein alpha (PURα) disrupts signaling transduction and often leads to human diseases including cancer. PURα was initially recognized as a tumor suppressor in acute myeloid leukemia (AML) and prostate cancer (PC).

View Article and Find Full Text PDF

TAR DNA-binding protein (TDP-43) and Metastasis Associated Lung Adenocarcinoma Transcript (MALAT1) RNA are both abundantly expressed in the human cell nucleus. Increased interaction of TDP-43 and MALAT1, as well as dysregulation of TDP-43 function, was previously identified in brain samples from patients with neurodegenerative disease compared to healthy brain tissues. We hypothesized that TDP-43 function may depend in part on MALAT1 expression levels.

View Article and Find Full Text PDF

Post-Docking Refinement of Peptide or Protein-RNA Complexes Using Thermal Titration Molecular Dynamics (TTMD): A Stability Insight.

J Chem Inf Model

January 2025

Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy.

RNA-protein interactions drive and regulate fundamental cellular processes like transcription and translation. Despite being still limited, the growing body of structural data significantly contributes to the characterization of these interactions. However, RNA complexes involving proteins or peptides are not always available due to the structural determination challenges that this biopolymer entails.

View Article and Find Full Text PDF

Germ cells are essential for fertility, embryogenesis, and reproduction. Germline development requires distinct types of germ granules, which contains RNA-protein (RNP) complexes, including germ plasm in embryos, piRNA granules in gonadal germ cells, and the Balbiani body (Bb) in oocytes. However, the regulation of RNP assemblies in zebrafish germline development are still poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!