A three-layered simulation methodology is described that rapidly evaluates biomanufacturing process options. In each layer, inferior options are screened out, while more promising candidates are evaluated further in the subsequent, more refined layer, which uses more rigorous models that require more data from time-consuming experimentation. Screening ensures laboratory studies are focused only on options showing the greatest potential. To simplify the screening, outputs of production level, cost and time are combined into a single value using multi-attribute-decision-making techniques. The methodology was illustrated by evaluating alternatives to an FDA (U.S. Food and Drug Administration)-approved process manufacturing rattlesnake antivenom. Currently, antivenom antibodies are recovered from ovine serum by precipitation/centrifugation and proteolyzed before chromatographic purification. Alternatives included increasing the feed volume, replacing centrifugation with microfiltration and replacing precipitation/centrifugation with a Protein G column. The best alternative used a higher feed volume and a Protein G step. By rapidly evaluating the attractiveness of options, the methodology facilitates efficient and cost-effective process development.

Download full-text PDF

Source
http://dx.doi.org/10.1042/ba20070018DOI Listing

Publication Analysis

Top Keywords

biomanufacturing process
8
process options
8
feed volume
8
options
5
prototype software
4
methodology
4
software methodology
4
methodology rapid
4
rapid evaluation
4
evaluation biomanufacturing
4

Similar Publications

High-Security Data Encryption Enabled by DNA Multi-Strand Solid-Phase Hybridization and Displacement in Inkjet-Printed Microarrays.

ACS Appl Mater Interfaces

January 2025

Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.

Multicolor fluorescent encryption systems that respond to specific stimuli have drawn widespread attention to data storage and encryption due to their low cost and facile data access. However, existing encryption systems are limited by encryption materials, restricting their encryption depth. This study uses DNA molecules as encryption materials that offer exceptional specificity and encryption depth within sequences.

View Article and Find Full Text PDF

Enhanced methanol-xylose co-utilization strategy in Komagataella phaffii.

J Biotechnol

January 2025

School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. Electronic address:

Bio-manufacturing based on non-food carbon sources is conducive to alleviating the global food crisis and greenhouse effect. However, the mechanism of the utilization of methanol and xylose in Komagataella phaffii based on endogenous metabolic pathways has not been fully explored. In this study, transcriptomics revealed a positive correlation between methanol metabolic efficiency and the transcription level of genes related to xylose metabolism and phosphate metabolism.

View Article and Find Full Text PDF

Characterization of a novel D-sorbitol dehydrogenase from Faunimonas pinastri A52C2.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.

The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.

View Article and Find Full Text PDF

Visual and High-Efficiency Secretion of SARS-CoV-2 Nanobodies with .

Biomolecules

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.

Nanobodies have gained attention as potential therapeutic and diagnostic agents for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to their ability to bind and neutralize the virus. However, rapid, scalable, and robust production of nanobodies for SARS-CoV-2 remains a crucial challenge. In this study, we developed a visual and high-efficiency biomanufacturing method for nanobodies with by fusing the super-folder green fluorescent protein (sfGFP) to the N-terminus or C-terminus of the nanobody.

View Article and Find Full Text PDF

Heterologous and High Production of Ergothioneine in by Using Genes from Anaerobic Bacteria.

Metabolites

January 2025

School of Biotechnology, Key Laboratory of Carbohydrate Chemistry, Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.

Purpose: This study aimed to utilize genetically engineered for the production of ergothioneine (EGT). Given the value of EGT and the application of in enzyme preparation production, we cloned the key enzymes (EanA and EanB) from . Through gene alignment, new ergothioneine synthase genes (EanAN and EanBN) were identified and then expressed in to construct strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!