A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of aggregation, defects, and contaminant oxygen on water dissociation at Cu(110) surface: a theoretical study. | LitMetric

Influence of aggregation, defects, and contaminant oxygen on water dissociation at Cu(110) surface: a theoretical study.

J Chem Phys

Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China.

Published: September 2007

The DFT-PW91 slab model approach is employed to investigate the influence of aggregation, surface defects, and contaminant oxygen on water dissociation on Cu(110) at low temperatures. The dissociation barriers of water in various aggregate states are calculated in the range of 60-75 kJ/mol on the clean surfaces, in nice agreement with the experimentally determined values. It is revealed that the aggregation of water shows no propensity to reduce the activation barrier for the O-H bond breaking on Cu(110), at variance with the water chemistry on Ru(0001). The calculated activation energy on Cu(211) which is the most active stepped surface investigated is equal to the value on the (110) surface, indicating that the hydroxyl groups observed on Cu(110) at low temperatures may not stem from surface defects. The coadsorbed oxygen, whether as a "spectator" or a "participant," facilitates the water dissociation both kinetically and thermodynamically.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2751154DOI Listing

Publication Analysis

Top Keywords

water dissociation
12
influence aggregation
8
defects contaminant
8
contaminant oxygen
8
oxygen water
8
dissociation cu110
8
surface defects
8
cu110 low
8
low temperatures
8
water
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!