Covalent binding of reactive metabolites to cytochrome P450s (P450s) often causes their mechanism-based inactivation (MBI), resulting in drug-drug interactions or toxicity. The detection and identification of the P450 sites to which reactive metabolites bind would elucidate MBI mechanisms. We describe a proteomic approach using nano-LC/linear ion trap-Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to characterize the binding of a reactive metabolite of raloxifene, which is a known P450 3A4 inhibitor, to the P450 3A4 isozyme. LTQ-FT analyses revealed that the metabolic reaction of raloxifene in a reconstituted P450 3A4 system formed a reactive metabolite adduct to P450 3A4 apoprotein, accompanied by a mass shift of 471 Da relative to intact P450 3A4 apoprotein. The reaction mixtures were digested with trypsin, and then the tryptic digests were analyzed by nano-LC-MS/MS. This technique revealed that VWGFYDGQQPVLAITDPDMIK (position 71-91) was a tryptic peptide modified by the reactive metabolite derived from raloxifene. The site of adduction with the reactive metabolite was further postulated to be the nucleophilic OH group of Tyr-75 of P450 3A4. A proteomic approach using LTQ-FT can yield direct information on the P450 3A4 modification site without radiolabeled compounds. In addition, this information can elucidate mechanisms involved in the covalent binding of reactive metabolites and the inactivation of P450 3A4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/tx700165q | DOI Listing |
Sci Rep
January 2025
Institute for Breath Research, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
Cytochrome P450 (CYP) 3A4 plays a major role in drug metabolism. Its activity could be determined by non-invasive and cost-effective assays, such as breath analysis, for the personalised monitoring of drug response. For the first time, we identify an isotopically unlabelled CYP3A4 substrate, tolterodine that leads to the formation of a non-toxic volatile metabolite, acetone, which could potentially be applied to monitor CYP3A4 activity in humans.
View Article and Find Full Text PDFSci Rep
January 2025
Department of General and Transplant Surgery, Poznan University of Medical Sciences, 61-701, Poznan, Poland.
Tacrolimus is metabolized in the liver with the participation of cytochrome P450 isoforms 3A4 and 3A5 (CYP3A4, CYP3A5). Omeprazole, unlike famotidine, is a substrate and inhibitor of CYP2C19, CYP3A4, CYP3A5 enzymes. The aim of the study is to compare the effect of omeprazole and famotidine on the tacrolimus concentration and the kidney transplant function.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Shenyang Medical College, Shenyang, Liaoning, China. Electronic address:
Ethnopharmacological Relevance: Gardenia jasminoides J. Ellis (Gardeniae Fructus, GF) is a widely used herbal medicine in many prescriptions. However, inappropriate application of GF may induce hepatotoxicity, which greatly challenges its clinical application.
View Article and Find Full Text PDFPharmaceutics
December 2024
College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
: Perillyl alcohol (POH), a monoterpene natural product derived from the essential oils of plants such as perilla (), is currently in phase I and II clinical trials as a chemotherapeutic agent. In this study, we investigated the effect of POH on cytochrome P450 (CYP) activity for evaluating POH-drug interaction potential. : The investigation was conducted using pooled human liver microsomes (HLMs), recombinant CYP3A4 (rCYP3A4) enzymes, and human pluripotent stem cell-derived hepatic organoids (hHOs) employing liquid chromatography-tandem mass spectrometry.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States.
assessment of the potential of compounds to affect drug metabolizing enzymes and transporters and perpetrate drug-drug interactions (DDIs) is a common practice in drug research. For the development phase, regulators define an exhaustive list of enzymes and transporters to consider, but DDIs associated with many of these are minor and can be well-managed in the clinic; thus, progression of drug candidates that address unmet medical needs should not be curtailed due to this property. However, some enzymes and transporters are very important in drug disposition, so it is important to avoid/reduce inhibition or induction of these through drug design.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!