Drosophila myosin IB (Myo1B) is one of two class I myosins in the Drosophila genome. In the larval and adult midgut enterocyte, Myo1B is present within the microvillus (MV) of the apical brush border (BB) where it forms lateral tethers between the MV membrane and underlying actin filament core. Expression of green fluorescent protein-Myo1B tail domain in the larval gut showed that the tail domain is sufficient for localization of Myo1B to the BB. A Myo1B deletion mutation exhibited normal larval gut physiology with respect to food uptake, clearance, and pH regulation. However, there is a threefold increase in terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive enterocyte nuclei in the Myo1B mutant. Ultrastructural analysis of mutant midgut revealed many perturbations in the BB, including membrane tethering defects, MV vesiculation, and membrane shedding. The apical localization of both singed (fascin) and Dmoesin is impaired. BBs isolated from mutant and control midgut revealed that the loss of Myo1B causes the BB membrane and underlying cytoskeleton to become destabilized. Myo1B mutant larvae also exhibit enhanced sensitivity to oral infection by the bacterial pathogen Pseudomonas entomophila, and severe cytoskeletal defects are observed in the BB of proximal midgut epithelial cells soon after infection. Resistance to P. entomophila infection is restored in Myo1B mutant larvae expressing a Myo1B transgene. These results indicate that Myo1B may play a role in the local midgut response pathway of the Imd innate immune response to Gram-negative bacterial infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2043548 | PMC |
http://dx.doi.org/10.1091/mbc.e07-02-0191 | DOI Listing |
Front Physiol
June 2024
Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, Hannover, Germany.
Though myosins share a structurally conserved motor domain, single amino acid variations of active site elements, including the P-loop, switch-1 and switch-2, which act as nucleotide sensors, can substantially determine the kinetic signature of a myosin, ., to either perform fast movement or enable long-range transport and tension generation. Switch-2 essentially contributes to the ATP hydrolysis reaction and determines product release.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
August 2020
Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.
Actin waves are F-actin-rich entities traveling on the ventral plasma membrane by the treadmilling mechanism. Actin waves were first discovered and are best characterized in Dictyostelium. Class I myosins are unconventional monomeric myosins that bind lipids through their tails.
View Article and Find Full Text PDFSci Rep
July 2020
Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
MYO18B has been proposed to contribute to the progression of hepatocellular carcinoma (HCC). However, the signals that govern MYO18B transcription are not known. Here we show that, a network of C19MC miRNA-520G, IFN-γ, CEBPB and p53 transcriptional-defects promote MYO18B mRNA expression in HCCs.
View Article and Find Full Text PDFCell Death Dis
February 2018
Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland.
Type-II L-arginine:ureahydrolase, arginase-II (Arg-II), is shown to activate mechanistic target of rapamycin complex 1 (mTORC1) pathway and contributes to cell senescence and apoptosis. In an attempt to elucidate the underlying mechanism, we identified myosin-1b (Myo1b) as a mediator. Overexpression of Arg-II induces re-distribution of lysosome and mTOR but not of tuberous sclerosis complex (TSC) from perinuclear area to cell periphery, dissociation of TSC from lysosome and activation of mTORC1-ribosomal protein S6 kinase 1 (S6K1) pathway.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
February 2016
Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota.
Class I myosins are widely expressed with roles in endocytosis and cell migration in a variety of cell types. Dictyostelium express multiple myosin Is, including three short-tailed (Myo1A, Myo1E, Myo1F) and three long-tailed (Myo1B, Myo1C, Myo1D). Here we report the molecular basis of the specific localizations of short-tailed Myo1A, Myo1E, and Myo1F compared to our previously determined localization of long-tailed Myo1B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!