Treatment of [Pt(PCy(3))(2)] (Cy = cyclohexyl) with BI(3) afforded trans-[(Cy(3)P)(2)Pt(I)(BI(2))] by the oxidative addition of a B-I bond. The title compound represents the first diiodoboryl complex and was fully characterized by NMR spectroscopy and X-ray diffraction analysis. The latter revealed a very short Pt-B distance, thus indicating a pronounced pi contribution to this bond. By the addition of another 1 equiv of BI(3) to trans-[(Cy(3)P)(2)Pt(I)(BI(2))], a new Pt species [(Cy(3)P)(I(2)B)Pt(mu-I)](2) was formed with concomitant buildup of the phosphine borane adduct [Cy(3)P-BI(3)]. The former is obviously obtained by abstraction of PCy(3) from trans-[(Cy(3)P)(2)Pt(I)(BI(2))] and the subsequent dimerization of two remaining fragments. Interestingly, the dimerization is reversible, and the dinuclear compound can be converted to trans-[(Cy(3)P)(2)Pt(I)(BI(2))] upon the addition of PCy(3).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic7011028DOI Listing

Publication Analysis

Top Keywords

syntheses mono-
4
mono- dinuclear
4
dinuclear diiodoboryl
4
diiodoboryl complexes
4
complexes platinum
4
platinum treatment
4
treatment [ptpcy32]
4
[ptpcy32] cyclohexyl
4
cyclohexyl bi3
4
bi3 afforded
4

Similar Publications

Water-soluble porphyrins have garnered significant attention due to their broad range of applications in biomedicine, catalysis, and material chemistry. In this work, water-soluble platinum(II) and palladium(II) complexes with porphyrins bearing ethyl phosphonate substituents, namely, Pt/Pd 10-(ethoxyhydroxyphosphoryl)-5,15-di(-carboxyphenyl)porphyrins (M3m, M = Pt(II), Pd(II)) and Pt/Pd 5,10-bis(ethoxyhydroxyphosphoryl)-10,20-diarylporphyrins (M1d-M3d; aryl = -tolyl (1), mesityl (2), -carboxyphenyl (3)), were synthesized by alkaline hydrolysis of the corresponding diethyl phosphonates M6m and M4d-M6d. NMR, UV-vis, and fluorescence spectroscopy revealed that the mono-phosphonates M3m tend to form aggregates in aqueous media, while the bis-phosphonates M3d exist predominantly as monomeric species across a wide range of concentrations (10-10 M), ionic strengths (0-0.

View Article and Find Full Text PDF

Preclinical Study of a Dual-Target Molecular Probe Labeled with Ga Targeting SSTR2 and FAP.

Pharmaceuticals (Basel)

December 2024

Department of Nuclear Medicine, First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Beijing 100853, China.

Objective: Currently, Ga-labeled somatostatin analogs (SSAs) are the most commonly used imaging agents for patients with neuroendocrine tumors (NETs) in clinical practice, demonstrating good results in tumor diagnosis. For applications in peptide receptor radionuclide therapy (PRRT), targeted drugs should have high tumor uptake and prolonged tumor retention time. To enhance the uptake and retention of tracers in NETs, our goal is to design a Ga-labeled heterodimer for optimizing pharmacokinetics and assess whether this form is more efficacious than its monomeric equivalents.

View Article and Find Full Text PDF

: In 2022, the World Health Organization highlighted the necessity for the development of new antifungal agents. Polyene antibiotics are characterized by a low risk of drug resistance; however, their use is limited by low solubility and severe side effects. : A series of -alkylated derivatives of amphotericin B and nystatin A as well as their -(2-hydroxyethyl)amides were synthesized.

View Article and Find Full Text PDF

Considering the demand for organosulfur materials and the challenges associated with currently used oxidation processes, in this study, we evaluated the counter-cation of sodium chlorite (Na+ClO2-) with tetrabutylammonium chloride (Bu4N+Cl-) to synthesise tetrabutylammonium chlorite (Bu4N+ClO2-). Bu4N+ClO2- exhibited good solubility in organic solvents like chloroform (1.6 g mL-1) and ethyl acetate (0.

View Article and Find Full Text PDF

Dimethyl ether (DME) is a versatile molecule, gaining increasing interest as a viable hydrogen and energy storage solution, pivotal for the transitioning from fossil fuels to environmentally friendly and sustainable energy supply. This research explores a novel approach for the direct conversion of CO to DME in a fixed-bed reactor, combining the Cu/ZnO/AlO methanol synthesis catalyst with supported heteropolyacids (HPAs). First, various HPAs, both commercially available and custom-synthesized, were immobilized on Montmorillonite K10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!