A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Round-robin evaluation of a solid-phase microextraction-gas chromatographic method for reliable determination of trace level ethylene oxide in sterilized medical devices. | LitMetric

Round-robin evaluation of a solid-phase microextraction-gas chromatographic method for reliable determination of trace level ethylene oxide in sterilized medical devices.

Biomed Chromatogr

Sterile Process Technologies (SPT), a Division of the Johnson & Johnson Corp., Route 1 and Commerce Blvd, North Brunswick, NJ 08902, USA.

Published: February 2008

Medical devices that are sterilized with ethylene oxide (EtO) retain small quantities of EtO residuals, which may cause negative systemic and local irritating effects, and must be accurately quantified to ensure non-toxicity. The goal of this round-robin study is to investigate the capability of a novel solid-phase microextraction-gas chromatographic (SPME-GC) method for trace-level EtO residuals analysis: three independent laboratories conducted a guided experiment using this SPME-GC method, in assessing method performance, ruggedness and the feasibility of SPME fibers. These were satisfactory across the independent laboratories, at the 0.05-5.00 ppm EtO range. This method was then successfully applied to analyze EtO residuals in several sterilized/aerated medical devices of various polymeric composition, reliably detecting and quantifying the trace levels of EtO residuals present ( approximately 0.05 ppm EtO). SPME is a feasible alternative for quantifying trace-level EtO residuals in sterilized medical devices, thereby lowering the limit of quantification (LOQ) by as much as two to three orders of magnitude over the current GC methodology of direct liquid injection.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bmc.908DOI Listing

Publication Analysis

Top Keywords

eto residuals
20
medical devices
16
solid-phase microextraction-gas
8
microextraction-gas chromatographic
8
ethylene oxide
8
sterilized medical
8
eto
8
spme-gc method
8
trace-level eto
8
independent laboratories
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!