Conclusions: These results demonstrate that functional magnetic resonance imaging (fMRI) is an optimal tool to investigate the auditory cortex. The study suggests that there is a medio-lateral gradient of responsiveness to high frequencies medially and low frequencies laterally. The contralateral auditory cortex is more responsive than the ipsilateral cortex to tones presented monaurally.

Objectives: To demonstrate the activation of the primary auditory cortex in normal-hearing subjects using fMRI and to examine the response and topographic location of activation in the human auditory brain to stimulation with two different frequencies in a large group of volunteers.

Subjects And Methods: Scanning was performed on a 1.5 Tesla MR with head gradient coils and a birdcage radiofrequency coil. Multiplanar echo-planar images were acquired in 32 subjects aged between 18 and 49 years. Two groups were defined, according to age (group A, 18 to <35 years old; group B, 35 to <50 years old). We studied normal-hearing subjects scanned while listening to auditory stimuli: narrative text in one volunteer and non-speech noise (pure tones 750 Hz and pure tones 2 KHz) in all subjects.

Results: For both tone frequencies, auditory activation was observed bilaterally across the supratemporal plane in 29 of the 32 subjects (90.62%) with a probability level of p<0.001. In Heschl's gyrus (HG) contralateral to the stimulated ear, the extent of activation was generally greater than in homolateral HG. There were no statistical differences in HG activation according to age or sex. The 750 Hz tone activated more voxels in the medial area of the transverse temporal gyrus (TTG) whereas the 2000 Hz tone activated more voxels in the lateral TTG.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00016480701258705DOI Listing

Publication Analysis

Top Keywords

auditory cortex
16
primary auditory
8
cortex normal-hearing
8
normal-hearing subjects
8
functional magnetic
8
magnetic resonance
8
resonance imaging
8
auditory
5
cortex
5
activation patterns
4

Similar Publications

High definition transcranial direct current stimulation as an intervention for cognitive deficits in Alzheimer's dementia: A randomized controlled trial.

J Prev Alzheimers Dis

February 2025

Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.

Background: Recent disease-modifying treatments for Alzheimer's disease show promise to slow cognitive decline, but show no efficacy towards reducing symptoms already manifested.

Objectives: To investigate the efficacy of a novel noninvasive brain stimulation technique in modulating cognitive functioning in Alzheimer's dementia (AD).

Design: Pilot, randomized, double-blind, parallel, sham-controlled study SETTING: Clinical research site at UT Southwestern Medical Center PARTICIPANTS: Twenty-five participants with clinical diagnoses of AD were enrolled from cognition specialty clinics.

View Article and Find Full Text PDF

The brain faces the challenging task of preserving a consistent portrayal of the external world in the face of disruptive sensory inputs. What alterations occur in sensory representation amidst noise, and how does brain activity adapt to it? Although it has previously been shown that background white noise (WN) decreases responses to salient sounds, a mechanistic understanding of the brain processes responsible for such changes is lacking. We investigated the effect of background WN on neuronal spiking activity, membrane potential, and network oscillations in the mouse central auditory system.

View Article and Find Full Text PDF

Hemispheric difference of adaptation lifetime in human auditory cortex measured with MEG.

Hear Res

December 2024

Leibniz Institute for Neurobiology, Research Group Comparative Neuroscience, Magdeburg, Germany; Department of Psychology, Lancaster University, Lancaster, UK.

Adaptation is the attenuation of a neuronal response when a stimulus is repeatedly presented. The phenomenon has been linked to sensory memory, but its exact neuronal mechanisms are under debate. One defining feature of adaptation is its lifetime, that is, the timespan over which the attenuating effect of previous stimulation persists.

View Article and Find Full Text PDF

Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits.

View Article and Find Full Text PDF

Cognitive processes such as action planning and decision-making require the integration of multiple sensory modalities in response to temporal cues, yet the underlying mechanism is not fully understood. Sleep has a crucial role for memory consolidation and promoting cognitive flexibility. Our aim is to identify the role of sleep in integrating different modalities to enhance cognitive flexibility and temporal task execution while identifying the specific brain regions that mediate this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!