Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biodegradable amphiphilic graft copolymers with different compositions were synthesized by grafting poly(L-lactide) (PLLA) sequences onto a water-soluble poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide] (PHEA) backbone. The critical micelle concentration (CMC) of the graft polymers was determined by fluorescence probe technique. Using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, the graft polymers were proved to have low cytotoxicity. Based on the specific physicochemical property of the graft copolymers, submicron sized microsphere drug delivery systems were prepared by a very convenient "ultrasonic dispersion method", which did not involve toxic organic solvents. The drug-loaded microspheres had a regular spherical shape with a narrow size distribution. A hydrophobic drug, prednisone acetate, was encapsulated into polymeric microspheres and the in vitro drug release was studied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2007.08.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!