Ethanol consumption modifies dendritic cell antigen presentation in mice.

Alcohol Clin Exp Res

Northwestern University, Feinberg School of Medicine, Department of Microbiology-Immunology, Chicago, Illinois 60611, USA.

Published: October 2007

Background: Alcohol consumption impairs type 1 cell-mediated adaptive immune responses both in vivo and in vitro. The present study investigated the effect of alcohol consumption on antigen-presenting cell (APC) populations and cytokine production.

Methods: BALB/c were fed ethanol-containing, pair-fed isocaloric liquid control, or solid diets for 11 days. Macrophage and dendritic cell (DC) populations were isolated by paramagenetic bead separation and used to present ovalbumin (OVA) to highly purified syngeneic CD4+ T cells derived from DO11.10 T cell receptor transgenic mice in coculture. DC isolated from diet-fed mice were also used to present OVA to highly purified CD4+ T cells derived from antigen-naïve DO11.10Rag2-/- mice that are devoid of memory T cells. In vitro cytokine responses, interleukin (IL) -2, IL-6, IL-12, IL-13, IL-17A, and interferon-gamma (IFN-gamma) were measured by enzyme-linked immunosorbent assay. Flow cytometry measured cell surface molecule expression.

Results: Alcohol consumption impairs delayed hypersensitivity responses (type 1) and enhances serum IgE levels (type 2). CD11c+ DC, but not F4/80+ macrophages, support cytokine responses by purified CD4+ T cells. CD11c+ DC derived from ethanol consuming BALB/c mice show diminished ability to support IFN-gamma responses by purified CD4+ T cells derived from DO11.10 or DO11.10Rag2-/- mice. Subset analysis indicates that of the 3 "conventional" DC subsets found in mouse spleens, CD11c+CD8(alpha)+ DCs are both responsible for OVA presentation and susceptible to the effects of ethanol. Ethanol consumption does not overtly alter the percent of splenic DC, but does increase the surface density of CD11c on these cells. Data show that cocultures containing purified CD4+ T DO11.10 cells and APC derived from alcohol-consuming mice show decreased IL-6, IL-12, IL-17A, and IFN-gamma and increased IL-13 cytokine production in response to OVA stimulation.

Conclusions: Ethanol alters CD11c+CD8(alpha)+ DC function, affecting cytokines responsible for adaptive immune responses. A unifying hypothesis for the underlying mechanism(s) of ethanol's effect upon adaptive immune function is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1530-0277.2007.00479.xDOI Listing

Publication Analysis

Top Keywords

cd4+ cells
16
purified cd4+
16
alcohol consumption
12
adaptive immune
12
cells derived
12
ethanol consumption
8
dendritic cell
8
consumption impairs
8
immune responses
8
ova highly
8

Similar Publications

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a second-line treatment with curative potential for leukemia patients. However, the prognosis of allo-HSCT patients with disease relapse or graft-versus-host disease (GvHD) is poor. CD4 or CD8 conventional T (Tconv) cells are critically involved in mediating anti-leukemic immune responses to prevent relapse and detrimental GvHD.

View Article and Find Full Text PDF

Background: The proportion of people living with HIV (PLHIV) in Guangxi who are men who have sex with men (MSM) increased rapidly to nearly 10% in 2023; notably, over 95% of this particular population is currently receiving antiretroviral therapy (ART). This study aimed to describe the survival of MSM PLHIV, depict the characteristics and trends of changes in CD4 T cell counts, CD4/CD8 T cell ratio, and viral load, and explore immunological indicators that may be related to mortality during different stages of treatment.

Methods: Immunological indicators of MSM PLHIV receiving ART were extracted and categorized into baseline, mid-treatment, and last values.

View Article and Find Full Text PDF

The 'inflammazone' in chronic inflammatory diseases: psoriasis and sarcoidosis.

Trends Immunol

January 2025

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Zenith Institute of Medical Sciences, Guangzhou 510120, China. Electronic address:

Chronic inflammatory diseases show significant heterogeneity in their phenotypes, with diverse immune cells and mediators interacting in response to various stimuli. This review proposes the concept of the 'inflammazone' framework - which maps the distribution of immune components driving disease pathogenesis - using sarcoidosis and psoriasis as examples. Sarcoidosis features granulomatous inflammation with macrophages and CD4 T cells, which can spread to lymph nodes and other organs.

View Article and Find Full Text PDF

Background: Polyclonal autologous T cells that are epigenetically reprogrammed through mTOR inhibition and IFN-α polarization (RAPA-201) represent a novel approach to the adoptive T cell therapy of cancer. Ex vivo inhibition of mTOR results causes a shift towards T central memory (T) whereas ex vivo IFN-α promotes type I cytokines, with each of these functions known to enhance the adoptive T cell therapy of cancer. Rapamycin-resistant T cells polarized for a type II cytokine phenotype were previously evaluated in the allogeneic transplantation context.

View Article and Find Full Text PDF

This study investigated the effect of dandelion (Taraxacum officinale) leaf aqueous extract (DLE) on the immunological response of mice following infection with Schistosoma mansoni. Mice (in groups of 7) were first experimentally infected with S. mansoni and, 6 weeks later, were treated with praziquantel (PZQ) and/or DLE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!