Pinus lambertiana (sugar pine) is an economically and ecologically important conifer with a 1600-km latitudinal range extending from Oregon, USA, to northern Baja California, Mexico. Like all North American white pines (subsect. Strobus), sugar pine is highly susceptible to white pine blister rust, a disease caused by the fungus Cronartium ribicola. We conducted a chloroplast DNA (cpDNA) survey of Pinus subsect. Strobus with comprehensive geographical sampling of P. lambertiana. Sequence analysis of 12 sugar pine individuals revealed strong geographical differentiation for two chloroplast haplotypes. A diagnostic restriction site survey of an additional 72 individuals demarcated a narrow 150-km contact zone in northeastern California. In the contact zone, maternal (megagametophtye) and paternal (embryo) haplotypes were identified in 31 single seeds, demonstrating bidirectional pollen flow extending beyond the range of maternal haplotypes. The frequencies of the Cr1 allele for white pine blister rust major gene resistance, previously determined for 41 seed zones, differ significantly among seed zones that are fixed for the alternate haplotypes, or contain a mixture of both haplotypes. Interspecific phylogenetic analysis reveals that the northern sugar pine haplotype belongs to a clade that includes Pinus albicaulis (whitebark pine) and all of the East Asian white pines. Furthermore, there is little cpDNA divergence between northern sugar pine and whitebark pine (dS = 0.00058). These results are consistent with a Pleistocene migration of whitebark pine into North America and subsequent chloroplast introgression from whitebark pine to sugar pine. This study demonstrates the importance of placing phylogeographical results in a broader phylogenetic context.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-294X.2007.03461.x | DOI Listing |
Plant Physiol Biochem
January 2025
College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China. Electronic address:
Competition is ubiquitous and an important driver of tree mortality. Non-structural carbohydrates (NSCs, including soluble sugars and starch) and C-N-P stoichiometries are affected by the competitive status of trees and, in turn, physiologically determine tree growth and survival in competition. However, the physiological mechanisms behind tree mortality caused by intraspecific competition remain unclear.
View Article and Find Full Text PDFMolecules
January 2025
Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA.
Members of the genus are well known for their medicinal properties, which can be attributed to their essential oils. In this work, we have examined the leaf essential oils of five understudied species collected from various locations in western North America. The essential oils were obtained by hydrodistillation and analyzed by gas chromatographic methods, including enantioselective gas chromatography.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland.
The increasing prevalence of monocultures has reduced floral diversity, diminishing pollen diet variety for bees. This study examines the impact of monofloral pollen diets (hazel, rapeseed, pine, buckwheat, , goldenrod) on the antioxidant enzyme activities in the fat body from tergite 3, tergite 5, sternite, and hemolymph of honey bees. We show that pollen from plants such as rapeseed, , buckwheat, and goldenrod (rich in phenolic compounds and flavonoids) increases the activities of SOD, CAT, GST, and GPx in the fat body and hemolymph compared to the control group.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia.
The basidiomycete strain LE-BIN1700 (Agaricales, ) is able to grow on agar media supplemented with individual components of lignocellulose such as lignin, cellulose, xylan, xyloglucan, arabinoxylan, starch and pectin, and also to effectively destroy and digest birch, alder and pine sawdust. produces a unique repertoire of proteins for the saccharification of the plant biomass, including predominantly oxidative enzymes such as laccases (family AA1_1 CAZymes), GMC oxidoreductases (family AA3_2 CAZymes), FAD-oligosaccharide oxidase (family AA7 CAZymes) and lytic polysaccharide monooxygenases (family LPMO X325), as well as accompanying acetyl esterases and loosenine-like expansins. Metabolomic analysis revealed that, specifically, monosaccharides and carboxylic acids were the key low molecular metabolites in the culture liquids in the experimental conditions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, China; College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:
Masson pine wood is widely used in living spaces, decoration, and construction. Owing to its high sugar content and tendency to mold. Masson pine wood has been treated with anti-mildew agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!