Agrobacterium tumefaciens-mediated transformation (ATMT) has become a prevalent tool for functional genomics of fungi, but our understanding of T-DNA integration into the fungal genome remains limited relative to that in plants. Using a model plant-pathogenic fungus, Magnaporthe oryzae, here we report the most comprehensive analysis of T-DNA integration events in fungi and the development of an informatics infrastructure, termed a T-DNA analysis platform (TAP). We identified a total of 1110 T-DNA-tagged locations (TTLs) and processed the resulting data via TAP. Analysis of the TTLs showed that T-DNA integration was biased among chromosomes and preferred the promoter region of genes. In addition, irregular patterns of T-DNA integration, such as chromosomal rearrangement and readthrough of plasmid vectors, were also observed, showing that T-DNA integration patterns into the fungal genome are as diverse as those of their plant counterparts. However, overall the observed junction structures between T-DNA borders and flanking genomic DNA sequences revealed that T-DNA integration into the fungal genome was more canonical than those observed in plants. Our results support the potential of ATMT as a tool for functional genomics of fungi and show that the TAP is an effective informatics platform for handling data from large-scale insertional mutagenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169514PMC
http://dx.doi.org/10.1111/j.1365-2958.2007.05918.xDOI Listing

Publication Analysis

Top Keywords

t-dna integration
28
fungal genome
12
t-dna
9
analysis t-dna
8
magnaporthe oryzae
8
tool functional
8
functional genomics
8
genomics fungi
8
integration fungal
8
integration
7

Similar Publications

Generation and Assessment of Soybean ( (L.) Merr.) Hybrids for High-Efficiency -Mediated Transformation.

Life (Basel)

December 2024

Research Institute of Nyíregyháza, Institutes for Agricultural Research and Educational Farm (IAREF), University of Debrecen, P.O. Box 12, 4400 Nyíregyháza, Hungary.

The -mediated technique is widely employed for soybean transformation, but the efficiency of this method is still relatively modest, in which multiple factors are involved. Numerous chemical and physiological cues from host plants are needed for attraction and subsequent T-DNA integration into the plant genome. Susceptible genotypes may permit this attachment and integration, and the agronomically superior genotypes with susceptibility to would play an important role in increasing transformation efficiency.

View Article and Find Full Text PDF

Innovations in Transgene Integration Analysis: A Comprehensive Review of Enrichment and Sequencing Strategies in Biotechnology.

ACS Appl Mater Interfaces

January 2025

Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.

Understanding the integration of transgene DNA (T-DNA) in transgenic crops, animals, and clinical applications is paramount for ensuring the stability and expression of inserted genes, which directly influence desired traits and therapeutic outcomes. Analyzing T-DNA integration patterns is essential for identifying potential unintended effects and evaluating the safety and environmental implications of genetically modified organisms (GMOs). This knowledge is crucial for regulatory compliance and fostering public trust in biotechnology by demonstrating transparency in genetic modifications.

View Article and Find Full Text PDF

Agrobacterium-mediated transformation of plants often results in the integration of multiple copies of T-DNA and backbone DNA from binary vectors into the host genome. However, the interplay between T-DNA and backbone DNA remains elusive. In this study, 70.

View Article and Find Full Text PDF

The increasing development of new genetically modified organisms underscores the critical need for comprehensive safety assessments, emphasizing the significance of molecular evidence such as gene integration, copy numbers, and adjacent sequences. In this study, the maize nitrate-efficient utilization gene ZmNRT1.1 A was introduced into maize variety y822 using transgenic technology, producing transgenic maize events ND4401 and ND4403 with enhanced tolerance to low nitrogen stress.

View Article and Find Full Text PDF

To enhance the breeding of new scab-resistant apple cultivars, a comprehensive understanding of the mechanisms governing major scab resistance genes is essential. Rvi12_Cd5 was previously identified as the best candidate gene for the Rvi12 scab resistance of the crab apple "Hansen's baccata #2" by gene prediction and in silico analysis. In the present study, Rvi12_Cd5 was used to transform the scab-susceptible apple cultivar "Gala Galaxy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!