Lipid freezing in dilute sonicated vesicular dispersions was studied using differential scanning calorimetry (DSC) and 1H NMR. For charged, anionic, or cationic lipids, approximately half of the lipids remain in a fluid state when cooled 20 degrees C below the main chain melting temperature. With a zwitterionic phospholipid, on the other hand, essentially no supercooling of the liquid state was observed. The observations are analyzed in terms of the nucleation and growth of flat solid domains in originally fluid spherical vesicles. As the solid domains grow, the remaining fluid domain is deformed, resulting in a curvature stress. Depending on the vesicle size and the bilayer bending rigidity, the solid domain growth may terminate as the gain in cohesive free energy is balanced by the curvature stress of the remaining fluid domain. It is argued that high bending rigidities are required for having a significant supercooling, which is why it is only observed for charged lipids.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la701554dDOI Listing

Publication Analysis

Top Keywords

sonicated vesicular
8
vesicular dispersions
8
solid domains
8
remaining fluid
8
fluid domain
8
curvature stress
8
incomplete lipid
4
lipid chain
4
chain freezing
4
freezing sonicated
4

Similar Publications

Background: Lipid vesicles, especially those utilizing biocompatible materials like chitosan (CHIT), hold significant promise for enhancing the stability and release characteristics of drugs such as indomethacin (IND), effectively overcoming the drawbacks associated with conventional drug formulations.

Objectives: This study seeks to develop and characterize novel lipid vesicles composed of phosphatidylcholine and CHIT that encapsulate indomethacin (IND-ves), as well as to evaluate their in vitro hemocompatibility.

Methods: The systems encapsulating IND were prepared using a molecular droplet self-assembly technique, involving the dissolution of lipids, cholesterol, and indomethacin in ethanol, followed by sonication and the gradual incorporation of a CHIT solution to form stable vesicular structures.

View Article and Find Full Text PDF

Oleic acid liposomes (OALs) are novel vesicular carriers ofunsaturated fatty acids and their corresponding ionized species, arranged within an enclosed lipid bilayer. This study aimed to encapsulate moxifloxacin HCl (MOX), a broad-spectrum antibacterial drug into OALs for effective treatment of Methicillin-resistant Staphylococcus aureus (MRSA) infection through topical application. Various OALs were formulatedby combining varied quantities of phosphatidylcholine (PC), oleic acid (OA), and cholesterol (CH) with 50 mg of MOX.

View Article and Find Full Text PDF

Parkinson's disease (PD) is indeed a complex neurodegenerative disorder recognized by the progressive depletion of dopaminergic neurons in the brain, particularly in the substantia nigra region, leading to motor impairments and other symptoms. But at the molecular level, the study about PD still lacks. As the number of cases worldwide continues to increase, it is critical to focus on the cellular and molecular mechanisms of the disease's presentation and neurodegeneration to develop novel therapeutic approaches.

View Article and Find Full Text PDF

Comparative analysis of whole cell-derived vesicular delivery systems for photodynamic therapy of extrahepatic cholangiocarcinoma.

J Photochem Photobiol B

May 2024

Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, 314001 Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CS Utrecht, the Netherlands. Electronic address:

Article Synopsis
  • - This study investigated using bionanovesicles for delivering a photosensitizer drug into cholangiocarcinoma cells to enhance photodynamic therapy (PDT) outcomes.
  • - Two types of bionanovesicles were created from cholangiocarcinoma cells, characterized for size, stability, and efficiency, and shown to effectively deliver the photosensitizer with no toxicity associated with dark conditions.
  • - The results indicated that these vesicles could successfully disperse the photosensitizer inside tumor cells and achieved higher PDT efficiency compared to traditional methods using liposomal forms.
View Article and Find Full Text PDF

Objective: The development of Mirtazapine (MRT)-loaded aquasomes by co-precipitation sonication technique to boost the antidepressant potential of MRT.

Methodology: MRT-loaded aquasomes formulations were prepared using Box-Behnken design to investigate the effect of independent factors including sonication time (X1), sonication temperature (X2), and sugar concentration (X3) on the dependent variables as particle size and drug loading efficiency. The formulation of the optimized formula was verified by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and X-ray Powder Diffraction (XRPD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!