Parkinson's disease (PD) involves an irreversible degeneration of the nigrostriatal pathway. As most cases of PD are sporadic, environmental risk factors may underlie neurodegeneration in dopaminergic neurons. One such factor is 6-hydroxydopamine (6-OHDA), which is widely used as a parkinsonian mimetic. Studies have shown that 6-OHDA generates reactive oxygen species and induces cell stress, the unfolded protein response, and apoptosis. Present findings show that 6-OHDA, but not hydrogen peroxide, MPP+, or rotenone, leads to the rapid formation of high-molecular-weight species of protein disulfide isomerase-associated protein 3 (ERp57) in a dose- and time-dependent fashion. Moreover, ERp57 conjugates are blocked by N-acetylcysteine and glutathione, suggesting that they represent oxidized forms of protein. Surprisingly, conjugates are complexed with DNA, because treatment with DNase reduces their appearance. Subcellular fractionation indicates that both nuclear and mitochondrial DNA are associated with the protein. Finally, toxin-treated ERp57 rapidly forms juxtanuclear aggresome-like structures in dopaminergic cells, suggesting that ERp57 plays an early adaptive response in toxin-mediated stress. Understanding the signaling mechanisms associated with parkinsonian mimetics, as well as their temporal induction, may aid in designing better interventions in models of PD.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ars.2007.1791DOI Listing

Publication Analysis

Top Keywords

cell stress
8
parkinsonian mimetic
8
erp57
5
protein
5
stress induced
4
induced parkinsonian
4
mimetic 6-hydroxydopamine
4
6-hydroxydopamine concurrent
4
concurrent oxidation
4
oxidation chaperone
4

Similar Publications

Commercial 3D zinc foam anodes with high deposition space and ion permeation have shown great potential in aqueous ion batteries. However, the local accumulated stress from its high-curvature surface exacerbates the Zn dendrite issue, leading to poor reversibility. Herein, we have employed zincophilic N-doped carbon@Sn composites (N-C@Sn) as nano-fillings to effectively release the local stress of high curvature surface of 3D Zn foams toward dendrite-free anode in aqueous zinc ion battery (AZIB).

View Article and Find Full Text PDF

Genotoxicity testing of the anthraquinone dye Alizarin Red S.

Curr Res Toxicol

December 2024

Institute of Nutrition and Food Science, Department of Food Safety, University of Bonn, Germany.

The anthraquinone dye Alizarin Red S (ARS) is used for marking live animals, specifically as a tool for monitoring the stock of the endangered European eel by marking caught fish with ARS before releasing the eels back into the wild. As ARS can be found in recaptured eels even years later, knowledge of potential health hazards of ARS is essential for assessing the food safety of eels marked with ARS. As the compound class of anthraquinones is known for their genotoxic and carcinogenic properties, concerns were raised regarding the food safety of marked eels.

View Article and Find Full Text PDF

Cellular senescence is characterized by a stable cell cycle arrest and a hypersecretory, proinflammatory phenotype in response to various stress stimuli. Traditionally, this state has been viewed as a tumor-suppressing mechanism that prevents the proliferation of damaged cells while activating the immune response for their clearance. However, senescence is increasingly recognized as a contributing factor to tumor progression.

View Article and Find Full Text PDF

The regulation of cellular metabolism is crucial for cell survival, with Sch9 in serving a key role as a substrate of TORC1. Sch9 localizes to the vacuolar membrane through binding to PI(3,5)P, which is necessary for TORC1-dependent phosphorylation. This study demonstrates that cytosolic pH regulates Sch9 localization.

View Article and Find Full Text PDF

Compensatory effect-based oxidative stress management microneedle for psoriasis treatment.

Bioact Mater

April 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.

Reactive oxygen species (ROS) at elevated levels trigger oxidative DNA damage, which is a significant factor in psoriasis exacerbation. However, normal ROS levels are essential for cell signaling, cell growth regulation, differentiation, and immune responses. To address this, we developed ROS control strategies inspired by compensatory effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!