Flavonoids, polyphenolic phytochemicals, are ubiquitous in plants and are commonly present in the human diet. They may exert diverse beneficial effects, including antioxidant and anticarcinogenic activities. The present study was designed to evaluate three biomolecules that play important roles in the apoptotic process: mitogen-activated protein kinases, protein phosphatases and NFkappaB, using HL60 cells treated with fisetin as an experimental model. Our results demonstrated that cells treated with fisetin presented high expression of NFkappaB, activation of MAPK p38 and an increase of phosphoprotein levels; inhibition of enzymes involved in redox status maintenance were also observed. Our findings reinforce the hypothesis that fisetin is likely to exert beneficial and/or toxic actions on cells not through its potential as antioxidant but rather through its modulation of protein kinase and phosphatase signaling cascades. Additionally, our results also indicate that the cellular effects of fisetin will ultimately depend on the cell type and on the extent to which they associate with the cells, either by interactions at the membrane or by uptake into the cytosol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14756360601162063 | DOI Listing |
Nutrients
December 2024
Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
Intestinal aging is characterized by declining protein homeostasis via reduced proteasome activity, which are hallmarks of age-related diseases. Our previous study showed that caffeine intake improved intestinal integrity with age by reducing vitellogenin (VIT, yolk protein) in . In this study, we investigated the regulatory mechanisms by which caffeine intake improves intestinal integrity and reduces vitellogenin (VIT) production in aged .
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea.
Cortactin (CTTN) is an actin-binding protein regulating actin polymerization and stabilization, which are vital processes for maintaining skeletal muscle homeostasis. Despite the established function of CTTN in actin cytoskeletal dynamics, its role in the myogenic differentiation of progenitor cells remains largely unexplored. In this study, we investigated the role of CTTN in the myogenic differentiation of C2C12 myoblasts by analyzing its effects on actin cytoskeletal remodeling, myocardin-related transcription factor A (MRTFA) nuclear translocation, serum response factor (SRF) activation, expression of myogenic transcription factors, and myotube formation.
View Article and Find Full Text PDFBiomolecules
December 2024
Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan.
Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase pivotal in cellular signal transduction, regulating cell adhesion, migration, growth, and survival. However, the regulatory mechanisms of FAK during tumorigenesis and progression still need to be fully understood. Our previous study demonstrated that -GlcNAcylation regulates integrin-mediated cell adhesion.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
Background: The effects of anesthetic drugs on myocardial cells have been a subject of research for the last 50 years. The clinical benefits of halogenated agents, particularly sevoflurane, have been demonstrated in cardiac surgery patients. These benefits are due to the action of different enzymes and a variety of molecular pathways mediated by the action of small noncoding RNAs (sRNA) such as microRNAs (miRNAs).
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.
The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!