Purpose: The aim of the present study was to evaluate the crystalline phase and microstructure of 4 commercial machinable ceramic blocks--Cerec Vitablocs Mark II (Vita), ProCAD (Ivoclar/Vivadent), GN-I (GC), and GNCeram (GC)--and compare flexural strength and shear bond strength between a dual-curing resin luting agent and the ceramics treated with a silane coupling agent.

Materials And Methods: Specimens were examined using scanning electron microscopy/energy-dispersive x-ray spectroscopy, and x-ray diffractometry. Three-point bending tests were performed with polished specimens 20 mm long, 4 mm wide, and 1.2 mm thick. Two differently shaped specimens for each of the 4 machinable ceramics were treated with a silane coupling agent. The specimens were then cemented together with a dual-curing resin luting agent. Half of the specimens were stored in water at 37 degrees C for 24 h and the other half were thermocycled 20,000 times.

Results: Chemical composition, crystalline phase, and crystallinity were significantly different between brands. The Vitablocs Mark II material had the significantly lowest flexural strength (101.7 +/- 15.3 MPa), while the GNCeram material had the highest (174.8 +/- 10.3 MPa). The use of a silane coupling agent yielded high shear bond strength after 20,000 thermocycles (Vitablocs Mark II: 37.7 +/- 3.7 MPa, ProCAD: 41.2 +/- 3.1 MPa, GNCeram: 50.2 +/- 2.1 MPa), except with the GN-I material (23.9 +/- 4.4 MPa).

Conclusion: It appeared that crystal distribution and particle size of leucite crystal, not crystallinity, in the feldspar glass matrix of silica-based machinable ceramics might influence the flexural strength and efficacy of a silane coupling agent in bonding between a dual-curing resin luting agent and machinable ceramics.

Download full-text PDF

Source

Publication Analysis

Top Keywords

machinable ceramics
16
flexural strength
16
dual-curing resin
16
resin luting
16
luting agent
16
silane coupling
16
bond strength
12
vitablocs mark
12
coupling agent
12
+/- mpa
12

Similar Publications

This paper presents a comprehensive study of two tool materials designed for the machining of Inconel 718 superalloy, produced through two distinct sintering techniques: High Pressure-High Temperature (HPHT) sintering and Spark Plasma Sintering (SPS). The first composite (marked as BNT), composed of 65 vol% cubic boron nitride (cBN), was sintered from the cBN-TiN-TiSiC system using the HPHT technique at a pressure of 7.7 GPa.

View Article and Find Full Text PDF

The both-sides machining method can obtain high precision cylindrical rollers, but there is a drawback that the lapping plate is easy to wear, which restricts further improvement in the quality of rollers machining. Aiming to solve this problem, a both-sides machining method using hard ceramic lapping plate is proposed. Friction and wear experiments with different lapping plate materials, along with the corresponding comparative machining experiments, demonstrated the superior performance of AlO ceramic lapping plate in terms of roundness (0.

View Article and Find Full Text PDF

Optimizing the Coordination Energy of Co-N Sites by Co Nanoparticles Integrated with Fe-NCNTs for Boosting PEMFC and Zn-Air Battery Performance.

Small

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.

Enhancing the catalytic performance and durability of M-N─C catalyst is crucial for the efficient operation of proton exchange membrane fuel cells (PEMFCs) and Zn-Air batteries (ZABs). Herein, an approach is developed for the in situ fabrication of a MOFs-derived porous carbon material, co-loaded with Co nanoparticles (NPs) and Co-N sites and integrated onto Fe-doped carbon nanotubes (CNTs), named Co-NC/Fe-NCNTs. Incorporating polymer-wrapped CNTs improves MOFs dispersion annealing at high temperature, which amplifies the three-phase boundary (TPB) by generating much more mesopores and exposing additional active sites within the catalysts layer.

View Article and Find Full Text PDF

Benchtop Machining of Self-Standing Alumina Doughs for Low-Number Fabrication and Prototyping.

ACS Appl Mater Interfaces

January 2025

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.

Cold isostatic pressing, gel casting, and protein coagulation are the most common techniques to produce green bodies prior to computer numerical control (CNC)-based machining for the near-net-scale shaping of ceramics. These methods typically involve various additives and entail several steps to create a green body that is capable of withstanding machining forces. Here, utilizing a single additive, we first introduced a facile benchtop method to generate self-standing, malleable doughs of alumina in under 2 min.

View Article and Find Full Text PDF

Analysis of the Deburring Efficiency of EN-AW 7075 Aluminum Alloy Parts with Complex Geometric Shapes Considering the Tool Path Strategy During Multi-Axis Brushing.

Materials (Basel)

December 2024

Department of Manufacturing Techniques and Automation, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Wincentego Pola 2, 35-959 Rzeszów, Poland.

The paper presents the results of an analysis of the effect of brushing on the edge condition of workpieces with complex geometric shapes, formed during milling, on a five-axis DMU 100 monoBLOCK machining center. A set of EN-AW 7075 aluminum alloy specimens with curvilinear edges requiring multi-axis machining was prepared. The change of edge condition after the milling process was realized using Xebec tools with flexible ceramic fibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!