A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protective effects of recombinant kunitz-domain 1 of human tissue factor pathway inhibitor-2 against 2-chloroethyl ethyl sulfide toxicity in vitro. | LitMetric

Objective: Sulfur mustard is a well-known blistering chemical warfare agent that has been investigated for its toxicological mechanisms and an efficacious antidote. Since sulfur mustard injury involves dermal:epidermal separation, proteolytic enzymes were suspected to be involved for this separation and eventual blister development. Therefore, protease inhibitors could be of therapeutic utility against sulfur mustard injury. In this study, the effects of Kunitz-domain 1 of human tissue factor pathway inhibitor-2 were evaluated against the toxic effects of 2-chloroethyl ethyl sulfide, a surrogate agent of sulfur mustard. Tissue factor pathway inhibitor-2 is a 32-kDa serine protease inhibitor produced by a variety of cell types including human epidermal keratinocytes, fibroblasts, and endothelial cells. It consists of 3 Kunitz-domains and the first Kunitz-domain contains the putative P(1) residue (arginine at position 24) responsible for protease inhibitory activity.

Methods: Recombinant wild-type and R24Q mutant Kunitz-domain 1s were expressed in Escherichia coli and purified. The purified proteins were refolded, and their effects were tested in an in vitro human epidermal keratinocyte cell wounding assay.

Results: Wild-type but not R24Q Kunitz-domain 1 inhibited the amidolytic activity of trypsin and plasmin. Wild-type Kunitz-domain1 was stable for 4 weeks at 42 degrees C and for more than 8 weeks at room temperature. Wild-type Kunitz-domain 1 significantly improved wound healing of unexposed and 2-chloroethyl ethyl sulfide-exposed cells without influencing cell proliferation. Although R24Q Kunitz-domain 1 lacked trypsin and plasmin inhibitory activity, it promoted wound closure of untreated and 2-chloroethyl ethyl sulfide-treated cells but to a much lesser degree.

Conclusion: These data suggest that wild-type Kunitz-domain 1 of human tissue factor pathway inhibitor-2 can be developed as a medical countermeasure against sulfur mustard cutaneous injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1937028PMC

Publication Analysis

Top Keywords

sulfur mustard
20
tissue factor
16
factor pathway
16
pathway inhibitor-2
16
2-chloroethyl ethyl
16
kunitz-domain human
12
human tissue
12
kunitz-domain
8
ethyl sulfide
8
mustard injury
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!